Complementary External Resource Allocation to Information Security in Smart Cities # Complementary External Resource Allocation to Information Security in Smart Cities Jun Li Kai Zou Shang Xiang Zhen Wan Lining Xing With the rapid development of technologies, such as big data, artificial intelligence, and cloud computing, the work cooperation among cities and the resources involved in business exchanges are deeply complementary. At the same time, information security has become one of the challenges for smart cities, which is ubiquitous and easy to cause public security issues. For this reason, this research modeled the actual problems and then made decisions on resource allocation by considering full cooperation and non-cooperation situations. Their influence with respect to city size, probability of intrusion by illegal users, and propagation probability of one-time intrusion were analyzed. Based on these foundation works, this research proposed incentive mechanisms to ensure the optimized information security for smart cities. These mechanisms ensure that cities not only voluntarily increase the intensity of resource allocation to information security, but also make the cooperation in line with the reality. Therefore, this balances the advantages and disadvantages of non-cooperation and full cooperation, so as to ensure that the information security level of urban agglomerations reaches the optimal state. Keywords: smart cities, information security, resource allocation, incentive mechanism Tob Regul Sci.™ 2021;7(5): 1036-1048 DOI: doi.org/10.18001/TRS.7.5.21 #### INTRODUCTION A modern smart city cannot be a closed system, and its communication will not be limited in the interior. In the actual operation, its external sharing and communication will sometimes be even more extensive than the internal communication. Therefore, it is necessary to strengthen studies on external resource allocation of the city on the premise of thorough research on internal resource allocation of the city [1-3]. With the rapid development and wide application of big data and artificial intelligence and the continuous integration and development of all walks of life [4-5], information security has become a huge challenge for smart cities at present [6-8]. It is not an isolated and separate issue, but is ubiquitous and can easily develop into a public security problem [9-13]. The cooperation in information security and business contacts between cities make urban resources be complementary to a certain extent [14-16]. After illegal users intrude into a city, they need to intrude into another city linked to ob- tain the corresponding benefits. ### PROBLEM DESCRIPTION AND MODEL-ING #### Problem Description Because resources between cities are complementary, if illegal users intrude into a city, but fail to intrude into cities linked, complementarity of resources guarantees all or partial information security, so that it is difficult for illegal users to fully benefit, thus avoiding heavy loss of the cities. At present, most scholars mainly focus on the research of resource allocation to information security in cities under the condition of information sharing. In fact, cities will also consider input and output and if the disadvantages of cooperation outweigh the advantages, they tend to choose not to cooperate. Therefore, it is necessary to study the optimal resource allocation in the case of non-cooperation [17]. Jun Li School of Public Administration, Xiangtan University, Xiangtan 411105, P.R. China, Kai Zou* School of Public Administration, Xiangtan University, Xiangtan 411105, P.R. China, Shang Xiang School of Public Administration, Xiangtan University, Xiangtan 411105, P.R. China, Zhen Wan* School of Public Administration, Xiangtan University, Xiangtan 411105, P.R. China, Lining Xing School of Software Engineering, Shenzhen Institute of Information Technology, Shenzhen 518172, P. R. China, School of Mathematics and Big Data, Foshan University, Foshan 528225, P.R. China, *Corresponding author: School of Public Administration, Xiangtan University, Xiangtan 411105, P.R. China Complementary External Resource Allocation to Information Security in Smart Cities This section mainly studied the problem that multiple cities with complementary external resources suffer from multiple propagation and intrusion by illegal users in the actual operation of smart cities. Firstly, the optimal resource allocation schemes were compared under non-cooperation and full cooperation situations and then government's compensation mechanisms and information sharing mechanisms were introduced. Furthermore, a numerical analysis was carried out. #### **Problem Modeling** Any game problem can be described as GT = {P, St, Ut}. For complementary external resources, cities are linked with each other and they may be attacked by illegal users. Even if cities are not attacked directly, they can also be attacked indirectly through propagation. Any problem of complementary external resource allocation can be transformed into a game problem through the propagation probability. Assumption 1: When the propagation probability of one-time intrusion between cities is same and set as α , illegal users can attack another city directly linked thereto by using the probability. Assumption 2: Illegal users do not have any prior information about the vulnerability for information security construction in cities. Therefore, the probabilities of illegal users intruding into all cities are same, and the value is β .. Assumption 3: The losses borne by cities intruded by illegal users are same, namely L. Assumption 4: When resources are not allocated to information security in cities, the probabilities of intrusion by illegal users are same across cities and value v. It is assumed that there are n cities forming complementary external resources and the probability of intrusion by illegal users after allocating resources to information security in the $j(j=1,2,\cdots n)$ th city is p_j . Moreover, the volume of resource allocation to information security is e_j , loss rescued by amount of money per unit is E and the expected loss after allocating resources to information security in cities is set as C_j . By improving the model proposed by Gordon [14], the probability p_j of intrusion by illegal users in the jth city can be obtained. $$p_j = \beta v^{Ee_j + 1} \tag{1}$$ Considering complementarity of resources between cities, that is, if illegal users intrude into one or several cities linked, but not all cities linked, it is acceptable to the whole information security system to a certain extent. Therefore, if illegal users want to maximize their profits, they have to intrude into all cities linked. #### PROPOSED METHODS # Resource Allocation to Information Security in Cities under Non-Cooperation This section mainly analyzes strategies for allocation of complementary external resources under non-cooperation between smart cities. Based on the assumptions in the above section and Formula (1), it is known that the probability of intrusion by illegal users in the $j(j=1,2,\cdots n)$ th city is $1-(1-p_j)\prod_{k=1,k\neq j}^n(1-\alpha^{k-1}p_k)$, so the minimum expected loss C_j of the city is taken as a loss function. $$Min C_{j} = [1 - (1 - p_{j}) \prod_{k=1, k \neq j}^{n} (1 - \alpha^{k-1} p_{k})] L + e_{j}$$ (2) By substituting Formula (1) into Formula (2), the following formula can be obtained. $$\min_{\alpha^{k-1}} C_j = \left[1 - \left(1 - \beta v^{Ee_j + 1} \right) \prod_{k=1, k \neq j}^n (1 - \alpha^{k-1} \beta v^{Ee_k + 1}) \right] L + e_j \tag{3}$$ Because $\prod_{k=1,k\neq j}^n (1-\alpha^{k-1}\beta v^{Ee_k+1})$ in Formula (3) is independent of e_j , let $\Phi=\prod_{k=1,k\neq j}^n (1-\alpha^{k-1}\beta v^{Ee_k+1})$, the following formula can be obtained by solving the partial derivative of Formula (3): $$\frac{\partial C_j}{\partial e_i} = \beta E L \Phi v^{Ee_j + 1} lnv + 1 \tag{4}$$ By further solving the partial derivative of Formula (4), the second-order derivative of Formula (5) can be obtained. $$\frac{\partial^2 C_j}{\partial e_j^2} = \beta E^2 L \Phi v^{Ee_j + 1} (lnv)^2 \tag{5}$$ It can be seen from Formula (5) that $\frac{\partial^2 C_j}{\partial e_j^2} \geq 0$ is always established. Therefore, when $\frac{\partial C_j}{\partial e_j} = 0$, the minimum value of the loss function C_j can be ob- Jun Li School of Public Administration, Xiangtan University, Xiangtan 411105, P.R. China, Kai Zou*School of Public Administration, Xiangtan University, Xiangtan 411105, P.R. China, Shang Xiang School of Public Administration, Xiangtan University, Xiangtan 411105, P.R. China, Zhen Wan*School of Public Administration, Xiangtan University, Xiangtan 411105, P.R. China, Lining Xing School of Software Engineering, Shenzhen Institute of Information Technology, Shenzhen 518172, P. R. China, School of Mathematics and Big Data, Foshan University, Foshan 528225, P.R. China, *Corresponding author:School of Public Administration, Xiangtan University, Xiangtan 411105, P.R. China Complementary External Resource Allocation to Information Security in Smart Cities tained, thus obtaining the following Conclusion 1. Conclusion 1: Under non-cooperation between smart cities with complementary external resources, the Nash equilibrium solution can be obtained through games when the optimal volume of resource allocation in each city is $y^* = (e_1^*, e_1^*, \dots, e_1^*)$, in which e_1^* meets Formula (6). $e_1^* = \frac{-ln(-\beta E L \Phi v ln v)}{E ln v}$ (6) $$e_1^* = \frac{-\ln(-\beta E L \Phi v \ln v)}{E \ln v} \tag{6}$$ In accordance with Formula (6), the effects of factors, such as size of linked cities, probability of intrusion by illegal users and propagation probability of one-time intrusion on resource allocation to information security in cities can be further analyzed. Based on Conclusion 1, e₁* meets $\beta EL\Phi v_{j}^{Ee_{1}^{*}+1}lnv_{j}+1=0 \qquad .
\qquad \text{Furthermore,} \label{eq:bell_energy}$ $\frac{\prod_{k=1,k\neq j}^{n}(1-\alpha^k\beta v^{Ee_{k+1}+1})}{\prod_{k=1,k\neq j}^{n}(1-\alpha^{k-1}\beta v^{Ee_{k}+1})}=1-\alpha^n\beta v^{Ee_{k+1}+1}<1\ \ \text{is}$ always established. For this reason, the relationship between size of linked cities and resource allocation to information security in cities is analyzed by combining with characteristics of complementary resources and considering the same volume of resource allocation between smart cities under noncooperation based on relevant assumptions in Section 2.2. On this basis, the following Conclusion 2 can be made. Conclusion 2: Under non-cooperation, with the increase of size of cities linked in complementary external resources of information security, the optimal volume e₁* of resource allocation to information security in cities reduces correspondingly, that is, e_1^* is negatively correlated with n. The reason is that with the increase of n, $\prod_{k=1,k\neq j}^{n} \! \left(1-\alpha^{k-1}\beta v^{Ee_k+1}\right)$ decreases, which raises $p_i = \beta v^{Ee_j+1}$. In addition, because $v \in [0, 1]$, e_1^* is bound to decrease accordingly. This suggests that the volume of resource allocation in each city reduces correspondingly with the increase of size of cities with complementary resources. However, this can greatly increase the probability of illegal users to intrude into a single city, so that the information security level of all smart cities significantly reduces. Although more linked cities can share the risks, such a behavior of reducing the volume of resource allocation decreases the information security level. If the size of linked cities reaches to a certain critical value, it is not necessary for smart cities to allocate resources to information security, which is unrealistic in practice. Therefore, it is necessary for the government to coordinate the relevant departments in each city and allocate resources to information security after weighing the advantages and disadvantages. By analyzing the relationship between the probability of intrusion by illegal users and resource allocation to information security in cities, Conclusion 3 can be made as follows: Conclusion 3: Under non-cooperation, for any probability $\beta \in [0, 1]$ of intrusion by illegal users, the optimal volume e₁* of resource allocation to information security in cities monotonically rises, namely $\frac{\partial e_1^*}{\partial \beta} > 0$ is always established. Conclusion 3 indicates that the volume of resource allocation to information security in cities increases with the probability of intrusion by illegal users in the model of complementary external resource allocation in smart cities, which confirms with the common sense. When the probability of intrusion by illegal users rises, cities will invest more to prevent illegal intrusion, thus raising their information security level. By analyzing the relationship between the propagation probability of one-time intrusion between cities and resource allocation to information security in cities, Conclusion 4 can be made as follows: Conclusion 4: Under non-cooperation, for any propagation probability $\alpha \in [0, 1]$ of one-time intrusion between cities, the optimal volume of resource allocation to information security in cities monotonically reduces, that is, $\frac{\partial e_1^*}{\partial \alpha} < 0$ is always established. Conclusion 4 indicates that with the increase of the propagation probability of one-time intrusion between cities, the optimal volume of resource allocation to information security in cities decreases correspondingly. This verifies the conclusion proposed in the existing study [x] that network communication has a negative impact on the optimal strategy of resource allocation. This implies that the power of cities to resource allocation to information security can be reduced with the increase of the propagation probability of one-time intrusion between cities. In the case of 1038 Complementary External Resource Allocation to Information Security in Smart Cities non-cooperation, it needs to adjust the network structure between cities and try to avoid indirect intrusion by illegal users due to network connection with other cities. Based on Conclusions 2 and 4, with the increase of city size and propagation probability of one-time intrusion between cities, the probability of intrusion by illegal users in cities rises. However, through the above analysis, instead of increasing resource allocation, cities reduce investment, which leads to a vicious circle of information security in cities. The main reason is that some cities have freeriding behaviors in the construction of information security in other cities, because the resource allocation in these cities not only has an effect on information security of themselves, but also exerts a positive influence on cities linked thereto. Due to the free-riding behaviors, marginal benefits of cities with resource allocation to information security decrease. ### Resource Allocation to Information Security in Cities under Full Cooperation The case of full cooperation is greatly different from the case of non-cooperation. Due to full cooperation, it is supposed that the probability of intrusion by illegal users after allocating resources to information security in cities is set as p and the volume of resource allocation to information security in cities is e. Therefore, the loss function of urban agglomerations in this case can be derived as follows: Min $C = [1 - (1 - p) \prod_{k=2}^{n} (1 - \alpha^{k-1} p_k)]L + ne$ (7) The following formula can be obtained by substituting Formula (1) into Formula (7). $$Min C = [1 - (1 - \beta v^{Ene+1}) \prod_{k=2}^{n} (1 - \alpha^{k-1} p_k)]L + ne$$ (8) Let $\Omega = \prod_{k=2}^{n} (1 - \alpha^{k-1} p_k)$, the following formula can be obtained by solving the partial derivative of Formula (8). $$\frac{\partial c}{\partial e} = \beta n E L \Omega v^{Ene+1} ln v + n \tag{9}$$ $\frac{\partial c}{\partial e} = \beta n E L \Omega v^{Ene+1} ln v + n \tag{9}$ The second-order derivative of Formula (8) can be obtained by further solving the partial derivative of Formula (9). $$\frac{\partial^2 c}{\partial v^2} = \beta n^2 E^2 L \Omega v^{Ene+1} (lnv)^2 \tag{10}$$ $\frac{\partial^2 c}{\partial e^2} = \beta n^2 E^2 L \Omega v^{Ene+1} (lnv)^2 \qquad (10)$ $\frac{\partial^2 c}{\partial e^2} \text{It can be observed from Formula (10) that}$ of the loss function C can be taken when $\frac{\partial c}{\partial e} = 0$, thus making the following Conclusion 5. Conclusion 5: In the case of full cooperation between smart cities with complementary external resources, the Nash equilibrium solution can be obtained through games when the optimal volume of resource allocation in cities ise₂* = $\frac{-\ln(-\beta E L \Omega v \ln v)}{n E \ln v}$. By comparing the optimal volumes e_1^* and e_2^* of resource allocation obtained in Conclusions 1 and 5, it is obvious that $e_1^* > e_2^*$. In the meanwhile, the following Conclusion 6 is made by comparing expected costs in the two cases. Conclusion 6: When the loss borne by cities after being intruded by illegal users is $L > -\frac{1}{p'\Phi}$, then $\frac{\partial C_1}{\partial e_1} < 0$. Moreover, the volume e_1^* of resource allocation in the case of non-cooperation of cities is larger than that e2 under full cooperation. Therefore, the expected cost $C_i(e_1^*)$ of cities under noncooperation is lower than that $C(e_2^*)$ under full cooperation. Conclusion 6 indicates that when the loss of cities caused by intrusion by illegal users is greater than a certain threshold, the volume of resource allocation of cities with complementary external resources under non-cooperation is higher than that under full cooperation. Moreover, the expected cost is lower than that under full cooperation. In the case of full cooperation, there is a specific minimum threshold for the expected cost of a city. If the expected cost is lower than the threshold, the city will not allocate resources. If it is higher than the threshold, the expected cost of the city will rise with the increase of the volume of resource allocation. Therefore, cities allocate resources to information security not in all cases. For example, when the expected cost of the city is very low and the risk borne by is controllable, it is unnecessary to carry out resource allocation. However, when very serious accidents about information security may be induced at very high expected cost of the city, the optimal volume of resource allocation in the city tends to be stable. In other words, the increase of expected cost of the smart city does not significantly raise the volume of resource allocation in the city. In this case, the city can adopt other risk control methods instead of wasteful investment. By further analyzing the influences of each parameter on the optimal volume of resource allocation in the case of full cooperation, Conclusions 7 and 8 are made as follows: Conclusion 7: Under full cooperation, with the increase of size of related cities with complementary external resources of information security, the optimal volume e₂ of resource allocation to infor- Complementary External Resource Allocation to Information Security in Smart Cities mation security in cities decreases correspondingly, that is, e_2^* has a negative correlation with n and $\frac{\partial e_2^*}{\partial n} < 0$. It can be seen from Conclusions 2 and 7 that for cities with complementary external resources of information security, although more sharing information can be obtained with the increase of city size, the optimal volume of resource allocation will not rise either under non-cooperation or full cooperation. This can raise the probability of intrusion by illegal users and reduce the information security level of cities. Therefore, the advantages and disadvantages of city size should be weighed in
any cases. Conclusion 8: Under full cooperation, for any propagation probability $\alpha \in [0,1]$ of one-time intrusion in cities, the optimal volume e_2^* of resource allocation to information security $\frac{1}{\partial e_2}$ cities is negatively correlated with α , namely $\frac{1}{\partial \alpha} < 0$ is always established. Conclusion 8 illustrates that under full cooperation, the optimal volume of resource allocation decreases with the increase of the propagation probability of one-time intrusion, which is consistent with the trend under non-cooperation in Conclusion 4. The increase of the propagation probability of one-time intrusion will inevitably make information security in cities more vulnerable, so that illegal users are more easily to intrude into cities. However, under non-cooperation, a city will not consider that being intruded damages other cities, thus leading to negative factors in resource allocation strategies of the cities, which to some extent encourages the free-riding behavior among cities. In conclusion, when cities with complementary external resources of information security make decisions independently rather than cooperatively, they only consider their own gains and losses; while, they do not consider overall benefits of urban agglomerations and damages to other cities due to their own vulnerability. If cities cooperate well and coordinate with each other in information security to minimize the overall expected cost of urban agglomerations, they are required to reduce the expected loss of urban agglomerations by increasing the volume of resource allocation. Therefore, under full cooperation, due to the sharing of resources between cities, this can reduce the investment of each city to a certain extent, but also increases the expected loss of cities. #### **INCENTIVE MECHANISMS** The analysis in the above two cases shows that if cities do not cooperate, they may work in their own ways, which is not conducive to the improvement of the information security level of urban agglomerations. However, full cooperation is bound to raise the volume of resources allocation in cities. Moreover, it is difficult to achieve full cooperation in reality. Therefore, how to make cities voluntarily increase the intensity of resource allocation to information security and the cooperation situation in line with the reality has become a problem that has to be solved. This study mainly considers to solve non-cooperation between cities through government's compensation mechanisms and to ensure the volume of resource allocation to be in line with the reality based on information sharing mechanisms. #### Government's Compensation Mechanisms It is assumed that through a certain means, the government can detect the intrusion by illegal users or can directly identify whether the intrusion is direct or indirect, or the affected cities can prove that the loss is caused by the propagation of other cities. Cities can appeal to government agencies to make up for the loss they suffered because of the involvement, and the loss is paid by the city directly intruded. Supposing that the city appeals successfully, the compensation that it can get from the linked city is γL , where γ represents the compensation coefficient of the city. If City j is implicated by City i and intrusion is indirectly propagated to City j because City i is directly intruded by illegal users, the loss of City j has nothing to do with other cities, then the government can request City i to compensate for City j. In this case, the loss function of City B can be obtained as follows: Min $C_B = [1 - (1 - p_i) \prod_{k=1, k \neq i}^n (1 - \alpha^{k-1} p_k)] L + e_i + \sum_{j=1, j \neq i}^n p_i \alpha (1 - p_j) \gamma L - \sum_{j=1, j \neq i}^n p_j \alpha (1 - p_i)$ (11) where, the first two terms have the same meanings as those in Formula (2), separately indicating the loss caused by intrusion into City B by illegal users and volume of resource allocation to information security. The third term represents the compensation for other cities due to indirect intrusion through City B and the fourth term denotes the compensation for City B because of indirect intrusion through other cities. By processing Formula (11), the following formula can be obtained. $$Min C_B = \left[1 - (1 - p_i) \prod_{k=1, k \neq i}^{n} (1 - \alpha^{k-1} p_k)\right] L + e_i + \sum_{j=1, j \neq i}^{n} \alpha (p_i - p_j) \gamma$$ (12) By substituting Formula (1) into Formula (12), $let\Psi=\prod_{k=1,k\neq i}^n(1-\alpha^{k-1}p_k)$, the following formula can be obtained. Complementary External Resource Allocation to Information Security in Smart Cities $$\min C_B = [1 - (1 - \beta v^{Ee_i + 1})\Psi]L + e_i + \sum_{j=1, j \neq i}^n \alpha \beta \gamma L (v^{Ee_i + 1} - v^{Ee_j + 1})$$ (13) By solving the partial derivative of Formula (13), the following formula is expressed as $$\frac{\partial c_B}{\partial e_i} = \beta LE \Psi v^{Ee_i+1} lnv + 1 + (n-1) \alpha \beta \gamma LE v^{Ee_i+1} lnv$$ (14) The second-order derivative of Formula (13) can be obtained by further solving the partial derivative of Formula (14). $$\frac{\partial^2 C_B}{\partial e_i^2} = [\Psi + (n-1)\alpha\gamma]\beta E^2 L v^{Ee_i+1} (lnv)^2 \qquad (15)$$ It can be seen from Formula (15) that $\frac{\partial^2 C_B}{\partial e_i^2} \ge 0$ is always established, so the minimum value of the loss function C_B can be obtained when $\frac{\partial C_B}{\partial e_i} = 0$, thus calculating the optimal volume e_3^* of resource allocation of each city. e₃* meets Formula (16). $$e_3^* = \frac{-\ln[-\beta LEv(\Psi + n\alpha\gamma - \alpha\gamma)lnv]}{Elnv}$$ (16) $e_3^* = \frac{-ln[-\beta LEv(\Psi + n\alpha\gamma - \alpha\gamma)lnv]}{Elnv}$ By comparing e_3^* with e_1^* under cooperation, it is evident that $e_3^* > e_1^*$. In other words, under the restriction of government's compensation mechanisms, the optimal volume of resource allocation in urban agglomerations is higher than that in the case of non-cooperation, so the information security level of urban agglomerations can be improved through government regulation. In the meanwhile, by comparing the expected cost under compensation mechanisms with that under non-cooperation and supposing that cities with complementary external resources are homogeneous, namely $p_i = p_i$, the loss function C_B can be degraded into C_j. When the loss borne by the city after intrusion by illegal users is $L > -\frac{1}{\beta E \Psi v^{Ee_i+1} ln v}$, then $\frac{\partial C_B}{\partial e_i} < 0$. In this case, $C_B(e_3^*) < C_j(e_1^*)$, that is, the expected cost obtained under regulation of government's compensation mechanisms is lower than that under non-cooperation, so Conclusion 9 can be made as follows: Conclusion 9: When the loss borne by the city after being intruded by illegal users is L> $-\frac{1}{\beta E \Psi_{v}^{Ee_{i}+1} lnv}$, if illegal users directly intrude into City i and indirectly intrude into City j through City i, the volume of compensation for City j by City i under government's compensation mecha- nisms is γL . In this case, the optimal volume of resource allocation in urban agglomerations is higher than that under non-cooperation and the expected $cost C_B(e_3^*)$ is lower than that $C_i(e_1^*)$ under noncooperation. Conclusion 9 indicates that the unified regulation of government's compensation mechanisms can not only improve the information security level, but also reduce the expected cost of urban agglomerations. Based on further analysis, the relationship between the optimal volume of resource allocation and the compensation coefficient under such mechanisms can be explored. Through Formula (16), the partial derivation of the optimal volume of resource allocation to the compensation coefficient can be calculated as follows: $$\frac{\partial e_3^*}{\partial \gamma} = -\frac{(n-1)\alpha}{Elnv[\Psi + (n-1)\alpha\gamma]} \tag{17}$$ Formula (17) obviously shows that $\frac{\partial e_3^*}{\partial v} > 0$ is always established, so the optimal volume of resource allocation rises with the increase of the compensation coefficient. #### Information Sharing Mechanisms To further improve the information security level, in addition to the use of compensation mechanisms, more attention should be paid to improving the information sharing between cities. The personal credit investigation of the banking system is a good example of information sharing among multiple banks and cities. Therefore, it is necessary to explore benefits of information sharing mechanisms to urban agglomerations, so as to guide the resource allocation to information security of urban agglomerations. Assumption 5: There is no information leakage between cities because of information sharing. A city can obtain the corresponding shared information from other cities linked with it, that is, the city can share the resource allocation in other cities. Assuming that $\delta \in [0,1]$ represents the sharing rate of information of City j with other cities, the volume of resource allocation to information security obtained by City j from other cities is $\delta \sum_{k=1,k\neq j}^{n} e_k$. Supposing that Assumption 5 is established, the loss function Cg of City j is shown as follows: $$Min \ C_g = \left[1 - \left(1 - p_j\right) \prod_{k=1, k \neq j}^{n} (1 - \alpha^{k-1} p_k)\right] L + e_j$$ (18) Complementary External Resource Allocation to Information Security in Smart Cities Let $\Gamma = \prod_{k=1, k\neq j}^n (1 - \alpha^{k-1} p_k)$, by substituting Formula (1) into Formula (18), the following formula can be obtained. $$Min C_g = \left[1 - \left(1 - \beta v^{E(e_j + \delta \sum_{k=1, k \neq j}^n e_k) + 1}\right) \Gamma\right] L + e_j$$ (19) By comparing e_4^* with the optimal volumes e_1^* and e₂ of resource allocation under noncooperation and full cooperation, it is found that $e_1^* > e_4^* > e_2^*$, indicating that the optimal volume of
resource allocation in urban agglomerations under information sharing is smaller than that under non-cooperation, but is larger than that under full cooperation. Therefore, such mechanisms can effectively improve the information security level and make resource allocation more in line with the actual situations. In the meanwhile, by comparing the expected costs, when the loss borne by the city intruded by illegal users is $L > -\frac{1}{p''\Gamma}$, then $\frac{\partial C_g}{\partial e_i} < 0$. The expected cost $C_g(e_4^*)$ of the city under such conditions is lower than that $C_i(e_1^*)$ under noncooperation. Therefore, under information sharing mechanisms, urban agglomerations can not only improve the information security level, but also meet the actual needs of resource allocation and reduce the expected cost. The following Conclusion 10 can be made. Conclusion 10: Under information sharing of urban agglomerations, if the loss borne by the city intruded by illegal users is $L > -\frac{1}{p''\Gamma}$, the optimal volume e_4^* of resource allocation in the city is larger than that e_1^* under non-cooperation, but smaller than that e_2^* under full cooperation. Moreover, its expected cost C_g is lower than that C_j under non-cooperation. It can be easily seen from Conclusion 10 that if loss of cities is larger than a certain threshold, compared with non-cooperation, information sharing in cities can not only improve the information security level of urban agglomerations, but also reduce the expected cost, which well solves the actual problems. By further analyzing the relationship between the optimal volume of resource allocation and the propagation probability of one-time intrusion in this case, Conclusion 11 can be obtained as follows: Conclusion 11: Under information sharing of urban agglomerations, if $\delta > -E\Gamma lnv$, the optimal volume e_4^* of resource allocation in urban agglomerations is positively correlated with the propagation probability α of one-time intrusion, that is, $\frac{\partial e_4^*}{\partial \alpha} > 0$ is always established. Conclusion 11 implies that once the sharing rate of information in urban agglomerations reaches a certain threshold, the optimal volume of resource allocation in cities increases with the propagation probability of one-time intrusion. In other words, after the sharing rate of information reaches the threshold, the propagation probability of one-time intrusion plays a positive role in the construction of information security in urban agglomerations. By analyzing the relationship between the optimal volume of resource allocation and the sharing rate of information, the following Conclusion 12 can be made. Conclusion 12: Under information sharing in urban agglomerations, if $\delta > -E\Gamma lnv$, the optimal volume e_4^* of resource allocation in urban agglomerations is negatively correlated with the sharing rate δ of information, that is, $\frac{\partial e_4^*}{\partial \delta} < 0$ is always established. According to Formula (19), when $\delta=0$, then $e_4^*=e_1^*$, that is, if there is no information sharing at all, it is degraded into the case of non-cooperation; when $\delta=1$, then $e_4^*=e_2^*$. In other words, if information is shared at a rate of 100%, the situation evolves into the full cooperation. Based on analysis, it can be observed that information sharing mechanism is an effective incentive means to solve problems that cities do not cooperate and to ensure the volume of resource allocation confirming to the actual situations. # EXPERIMENTAL RESULTS AND ANALYSIS Through a simulation experiment, the above conclusions can be conveniently and clearly verified. This section mainly deeply discusses the following problems. (1) Based on the numerical simulation, the optimal volumes of resource allocation and expected costs under non-cooperation and full cooperation of cities are compared. The Complementary External Resource Allocation to Information Security in Smart Cities influence trends of city size n, probability β of intrusion by illegal users and propagation probability α of one-time intrusion on the optimal volume of resource allocation and expected cost are numerically studied and analyzed, that is, numerical analysis under different conditions. (2) The influences of the compensation coefficient γ and sharing rate δ of information in cities on the optimal volume of resource allocation and expected cost are discussed, that is, numerical analysis of incentive mechanisms. According to the actual conditions, there cannot be too many cities that are linked together and have complementary external resources, generally no more than four, so the city sizes are set as n=3 and n=4 in the numerical simulation in this section. Because it is impossible and unnecessary to consider all values of some experimental parameters in the actual numerical simulation, this section only takes several representative values into account. It is supposed that L=400, v=0.5 and E=0.1. ### Numerical Analysis under Different Conditions Resource allocation under non-cooperation When n=3, the propagation probability α of one-time intrusion between cities and the probability β of intrusion by illegal users are set to be 0.1-0.9, with an increase amplitude of 0.1, to analyze the influences of α and β on resource allocation. The volume of resource allocation and the expected loss are listed in Tables 1 and 2. By further analyzing Tables 1 and 2, when α is 0.1 and β values [0.1,0.9] as well as β is 0.1 and α is [0.1,0.9], the results in Figs. 1 and 2 can be obtained. Fig. 1 Influences of β on the volume e_1^* Fig. 2 Influences of α on the volume \mathbf{e}_1^* It can be obviously observed from the above figures that with the constant increase of β , the volume e_1^* of resource allocation continuously rises, which verifies the correctness of Conclusion 3; as α constantly rises, the volume e_1^* of resource allocation continuously decreases, verifying that Conclusion 4 is correct. When n=4, by setting the propagation probability α of one-time intrusion between cities as 0.1~0.9, with an increase amplitude of 0.1 and the probability β of intrusion by illegal users as 0.1, the volume of resource allocation and the expected loss are attained, as shown in Table 3. Table 1 Influences of α and β on the volume e_1^* of resource allocation under non-cooperation | αβ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |-----|--------|---------|---------|---------|---------|---------|---------|---------|---------| | 0.1 | 4.6548 | 14.6548 | 20.5044 | 24.6548 | 27.8741 | 30.5044 | 32.7283 | 34.6548 | 36.3540 | | 0.2 | 4.5860 | 14.5860 | 20.4356 | 24.5860 | 27.8052 | 30.4356 | 32.6595 | 34.5860 | 36.2852 | | 0.3 | 4.5055 | 14.5055 | 20.3551 | 24.5055 | 27.7248 | 30.3551 | 32.5791 | 34.5055 | 36.2048 | | 0.4 | 4.4130 | 14.4130 | 20.2626 | 24.4130 | 27.6323 | 30.2626 | 32.4866 | 34.4130 | 36.1123 | | 0.5 | 4.3078 | 14.3078 | 20.1575 | 24.3078 | 27.5271 | 30.1575 | 32.3814 | 34.3078 | 36.0071 | | 0.6 | 4.1894 | 14.1894 | 20.0390 | 24.1894 | 27.4086 | 30.0390 | 32.2629 | 34.1894 | 35.8886 | | 0.7 | 4.0567 | 14.0567 | 19.9063 | 24.0567 | 27.2760 | 29.9063 | 32.1303 | 34.0567 | 35.7560 | | 0.8 | 3.9089 | 13.9089 | 19.7585 | 23.9089 | 27.1282 | 29.7585 | 31.9825 | 33.9089 | 35.6082 | | 0.9 | 3.7447 | 13.7447 | 19.5944 | 23.7447 | 26.9640 | 29.5944 | 31.8183 | 33.7447 | 35.4440 | Iun Li et al. Complementary External Resource Allocation to Information Security in Smart Cities | Eff | ects of | α and þ | on the | e expect | ted loss | under | non-coc | peratio | n | |-----|---------|---------|---------|----------|----------|---------|---------|---------|---------| | αβ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | | 0.1 | 20.6745 | 30.6745 | 36.5241 | 40.6745 | 43.8938 | 46.5241 | 48.7481 | 50.6745 | 52.3738 | | 0.2 | 22.5016 | 32.5016 | 38.3512 | 42.5016 | 45.7209 | 48.3512 | 50.5752 | 52.5016 | 54.2009 | | 0.3 | 24.6258 | 34.6258 | 40.4754 | 44.6258 | 47.8450 | 50.4754 | 52.6993 | 54.6258 | 56.3250 | | 0.4 | 27.0537 | 37.0537 | 42.9033 | 47.0537 | 50.2730 | 52.9033 | 55.1273 | 57.0537 | 58.7530 | | 0.5 | 29.7939 | 39.7939 | 45.6435 | 49.7939 | 53.0132 | 55.6435 | 57.8674 | 59.7939 | 61.4931 | | 0.6 | 32.8566 | 42.8566 | 48.7062 | 52.8566 | 56.0759 | 58.7062 | 60.9302 | 62.8566 | 64.5559 | | 0.7 | 36.2545 | 46.2545 | 52.1041 | 56.2545 | 59.4737 | 62.1041 | 64.3280 | 66.2545 | 67.9537 | | 0.8 | 40.0026 | 50.0026 | 55.8522 | 60.0026 | 63.2219 | 65.8522 | 68.0762 | 70.0026 | 71.7019 | | 0.9 | 44.1193 | 54.1193 | 59.9690 | 64.1193 | 67.3386 | 69.9690 | 72.1929 | 74.1193 | 75.8186 | By comparing results in Table 3 with Tables 1 and 2, it can be seen that with the increase of n, the volume e₁*of resource allocation reduces, while the expected loss increases, verifying that Conclusion 2 is correct. By comparing results in Table 3 with Tables 1 and 2, with the increase of n, the volume e₁* of resource allocation decreases, while the expected loss rises, proving that Conclusion 2 is cor- Table 3 Partial results of the volume of resource allocation and expected loss when n = 4 under noncooperation | | - cooperation | | |-----|-----------------------------|---------------| | α | Resource Allocation e_1^* | Expected Loss | | 0.1 | 4.6542 | 20.6885 | | 0.2 | 4.5817 | 22.6138 | | 0.3 | 4.4910 | 25.0069 | | 0.4 | 4.3782 | 27.9642 | | 0.5 | 4.2385 | 31.5893 | | 0.6 | 4.0668 | 35.9963 | | 0.7 | 3.8568 | 41.3140 | | 0.8 | 3.6006 | 47.6927 | | 0.9 | 3.2882 | 55.3142 | #### Resource allocation under full cooperation As n = 3, the propagation probability α of onetime intrusion between cities and the probability β of intrusion by illegal users are set to be 0.1-0.9, with an increase amplitude of 0.1, so as to
analyze their effects on resource allocation. The volume of resource allocation and the expected loss are demonstrated in Tables 4 and 5. By further analyzing Tables 4 and 5, when α is set as 0.1 and β is [0.1, 0.9] as well as β is set to be 0.1 and α values [0.1, 0.9], the results in Figs. 3 and 4 can be ob- It can be obviously seen from the above figures that as β constantly rises, the volume e_2^* of resource allocation continuously increases; with the continuous increase of α , e_2^* constantly decreases, confirming correctness of Conclusion 4. When n = 4, the propagation probability α of one-time intrusion between cities is set as 0.1-0.9, with an increase amplitude of 0.1 and the probability β of intrusion by illegal users is 0.1. Based on this, the obtained volume of resource allocation and the expected loss are illustrated in Table 6. Fig. 4 Effects of α on the volume e_2^* Table 4 Impacts of α and β on the volume e_2^* of resource allocation under full cooperation | | | | | | | anocano | | | | |-----|--------|--------|--------|--------|--------|---------|---------|---------|---------| | αβ | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | | 0.1 | 1.5470 | 4.8662 | 6.8043 | 8.1771 | 9.2404 | 10.1080 | 10.8406 | 11.4745 | 12.0329 | | 0.2 | 1.5186 | 4.8210 | 6.7446 | 8.1045 | 9.1558 | 10.0121 | 10.7338 | 11.3573 | 11.9057 | | 0.3 | 1.4857 | 4.7681 | 6.6747 | 8.0191 | 9.0559 | 9.8985 | 10.6071 | 11.2178 | 11.7538 | | 0.4 | 1.4481 | 4.7074 | 6.5941 | 7.9203 | 8.9399 | 9.7660 | 10.4587 | 11.0540 | 11.5748 | | 0.5 | 1.4056 | 4.6386 | 6.5022 | 7.8070 | 8.8064 | 9.6129 | 10.2865 | 10.8630 | 11.3654 | | 0.6 | 1.3582 | 4.5612 | 6.3982 | 7.6782 | 8.6537 | 9.4369 | 10.0876 | 10.6413 | 11.1209 | | 0.7 | 1.3057 | 4.4747 | 6.2813 | 7.5324 | 8.4797 | 9.2351 | 9.8580 | 10.3837 | 10.8349 | | 0.8 | 1.2478 | 4.3786 | 6.1503 | 7.3677 | 8.2816 | 9.0034 | 9.5922 | 10.0829 | 10.4982 | | 0.9 | 1.1843 | 4.2722 | 6.0038 | 7.1817 | 8.0557 | 8.7365 | 9.2826 | 9.7288 | 10.0968 | | β | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |-----|---------|---------|----------|----------|----------|----------|----------|----------|----------| | 0.1 | 24.4941 | 46.0607 | 61.5813 | 74.3402 | 85.4518 | 95.4444 | 104.6155 | 113.1509 | 121.1759 | | 0.2 | 26.6774 | 49.4661 | 65.9768 | 79.5924 | 91.4686 | 102.1565 | 111.9674 | 121.0966 | 129.6763 | | 0.3 | 29.1983 | 53.3993 | 71.0549 | 85.6616 | 98.4228 | 109.9154 | 120.4669 | 130.2837 | 139.5055 | | 0.4 | 32.0565 | 57.8596 | 76.8146 | 92.5462 | 106.3120 | 118.7181 | 130.1104 | 140.7074 | 150.6580 | | 0.5 | 35.2522 | 62.8480 | 83.2572 | 100.2482 | 115.1388 | 128.5680 | 140.9018 | 152.3727 | 163.1393 | | 0.6 | 38.7865 | 68.3668 | 90.3869 | 108.7738 | 124.9117 | 139.4760 | 152.8548 | 165.2960 | 176.9689 | | 0.7 | 42.6610 | 74.4201 | 98.2111 | 118.1341 | 135.6464 | 151.4625 | 165.9953 | 179.5091 | 192.1852 | | 0.8 | 46.8778 | 81.0141 | 106.7409 | 128.3465 | 147.3671 | 164.5603 | 180.3655 | 195.0653 | 208.8537 | | 0.9 | 51.4402 | 88.1571 | 115.9919 | 139.4355 | 160.1099 | 178.8188 | 196.0314 | 212.0498 | 227.0832 | By comparing results in Table 6 with Tables 4 and 5, as n increases, the volume of resource allocation decreases, while the expected loss rises, verifying that Conclusion 7 is correct. ### Numerical Analysis of Incentive Mechanisms Resource allocation under government's compensation mechanisms When $\alpha = 0.1$ and $\beta = 0.1$, the compensation coefficient γ between cities is set as 0.1-0.9, with an increase amplitude of 0.1 to analyze the influences of γ on resource allocation. The volume of resource allocation and the expected loss are displayed in Table 7. By displaying the results in Table 7 as graphs, the results in Fig. 5 and Fig. 6 can be obtained. The above figures obviously show that with the constant increase of V, the volume of resource allocation rises continuously, verifying the correctness that Formula (18) is always larger than zero. However, with the continuous Complementary External Resource Allocation to Information Security in Smart Cities change of \mathbb{Y} , the expected loss firstly constantly resion 9 is correct. duces and then continuously rises after reaching a threshold at a certain point, proving that Conclu- Table 6 Partial results of the volume of resource allocation and expected loss under full cooperation | ia expected 1033 under full coope | | | | | | | |-----------------------------------|---------------------|---------------|--|--|--|--| | G | Resource Allocation | Expected Loss | | | | | | 0.1 | 1.1596 | 25.0468 | | | | | | 0.2 | 1.1366 | 27.3955 | | | | | | 0.3 | 1.1081 | 30.2888 | | | | | | 0.4 | 1.0729 | 33.8241 | | | | | | 0,5 | 1.0299 | 38.0970 | | | | | | 0.6 | 0.9778 | 43.2017 | | | | | | 0.7 | 0.9152 | 49.2306 | | | | | | 0.8 | 0.8406 | 56.2745 | | | | | | 0.9 | 0.7523 | 64.4233 | | | | | Table 7 Volume of resource allocation and expected loss under government's compensation mechanisms | ν | Resource Allocation | Expected Loss | |-------|---------------------|---------------| | 0.1 | 4.9427 | 20.6470 | | 0.2 | 5.2250 | 20.6261 | | 0.3 | 5.5018 | 20.6112 | | 0.4 | 5.7733 | 20.6020 | | 0,5 | 6.0398 | 20.5980 | | 0.6 | 6.3015 | 20.5988 | | 0.7 | 6.5584 | 20.6042 | | 0.8 | 6.8109 | 20.6137 | | 0.9 | 7.0589 | 20.6272 | Fig. 5 Impacts of on the volume Fig. 6 Impacts of on the expected loss ## Resource allocation under information sharing mechanisms As $\alpha = 0.1$ and $\beta = 0.1$, the sharing rate δ of information between cities is set to be 0.1~0.9, with an increase amplitude of 0.1, to analyze effects of δ on resource allocation. The volume of resource allocation and the expected loss are demonstrated in Table 8. Table 8 Volume of resource allocation and expected loss under information sharing mechanisms | δ | Resource Allocation #4 | Expected Loss | |-----|------------------------|---------------| | 0.1 | 3.5959 | 14.0812 | | 0.2 | 2.9181 | 14.9861 | | 0.3 | 2.4551 | 15.7392 | | 0.4 | 2.1187 | 16.3621 | | 0.5 | 1.8634 | 16.8809 | | 0.6 | 1.6629 | 17.3174 | | 0.7 | 1.5013 | 17.6887 | | 0.8 | 1.3684 | 18.0078 | | 0.9 | 1.2571 | 18.2847 | The results in Table 8 are displayed in graphs, thus obtaining results in Figs. 7 and 8. It can be obviously seen that the volume of resource allocation constantly decreases and the expected loss also rises with the continuous increase of 5, proving the correctness of Conclusion 12. Jun Li et al. Complementary External Resource Allocation to Information Security in Smart Cities Fig. 7 Effects of on the volume #### **CONCLUSIONS AND SUGGESTIONS** This research mainly discussed the methods for resource allocation in the cases of non-cooperation and full cooperation of multiple cities. In addition, the effects of different influence factors, such as city size, propagation probability of one-time intrusion and probability of intrusion by illegal users on resource allocation in the two cases were also explored. In view of advantages and disadvantages of the two cases in the actual situations, the government's compensation mechanisms and information sharing mechanisms were proposed. These mechanisms ensure that cities not only voluntarily increase the intensity of resource allocation to information security, but also make the cooperation in line with the reality. Therefore, this balances the advantages and disadvantages of non-cooperation and full cooperation, so as to ensure that the information security level of urban agglomerations reaches the optimal state. #### **ACKNOWLEDGEMENTS** This research work is supported by the National Social Science Fund of China (No. 18BTQ055), the National Natural Science Foundation of China (61773120), the Youth Fund of Hunan Natural Science Foundation (2020JJ5149, 2020JJ5150) and the Innovation Team of Guangdong Provincial Department of Education (2018KCXTD031). #### REFERENCES - 1. Nazareth D L, Choi J. A system dynamics model for information security management [J]. Information & Management, 2015, 52(1): 123-134. - Houmb S H, Franqueira V N L, Engum E A. Quantifying security risk level from CVSS estimates of frequency and impact [J]. Journal of Systems & Software, 2010, 83(9): 1622-1634. - 3. Feng N, Li M. An information systems security risk assessment model under uncertain environment [J]. Applied Soft Computing Journal, 2011, 11(7): 4332-4340. - 4. Kong H K, Kim T S, Kim J. An analysis on effects of information security investments: a BSC perspective [J]. Journal of Intelligent Manufacturing, 2012, 23(4): 941-953. - 5. Li S, Bi F, Chen W, et al. An Improved Information Security Risk Assessments Method for Cyber-Physical-Social Computing and Networking [J]. IEEE Access, 2018, 6(99): 10311-10319. - 6. Basallo Y A, Senti V E, Sanchez N M. Artificial intelligence techniques for information security risk assessment [J]. IEEE Latin America Transactions, 2018, 16(3): 897-901. - 7. Grunske L, Joyce D. Quantitative risk-based security prediction for component-based systems with explicitly modeled attack profiles [J]. Journal of Systems & Software, 2008, 81(8): 1327-1345. - 8. Gusm OA, Silval CE, Silva MM, et al. Information security risk analysis model using fuzzy decision theory [J]. International Journal of Information Management, 2016, 36(1): 25-34. - Baskerville R. Integration of Information Systems and Cybersecurity Countermeasures: An Exposure to Risk Perspective [J]. Data Base for Advances in Information Systems, 2017, 49(1): 69-87. - 10. Huang CD, Hu Q, Behara RS. An economic analysis of the optimal information security investment in the case of a risk-averse firm [J]. International Journal of Production Economics, 2008, 114(2): 793-804. - 11. Yong J L, Kauffman R J, Sougstad R. Profitmaximizing firm investments in customer information security [J]. Decision Support System, 2011, 51(4): 904-920. - 12. Li J, Li M, Wu D, et al. An integrated risk
measurement and optimization model for trustworthy software process management [J]. Information Sciences, 2012, 191(9): 47-60. Complementary External Resource Allocation to Information Security in Smart Cities - 13. Benaroch M. Real Options Models for Proactive Uncertainty-Reducing Mitigations and Applications in Cybersecurity Investment Decision-Making [J]. Social Science Electronic Publishing, 2017, 4: 11-30. - 14. Gao X, Zhong W, Mei S. Security investment and information sharing under an alternative security breach probability function [J]. Information System Frontiers, 2015, 17(2): 423-438. - 15. Liu D, Ji Y, Mookerjee V. Knowledge sharing and investment decisions in information security[J]. Deci- - sion Support System, 2012, 52(1): 95-107. - 16. Gao X, Zhong W, Mei S. A game-theoretic analysis of information sharing and security investment for complementary firms [J]. Journal of Operation Research Society, 2014, 65(11): 1682-1691. - 17. Wang Gaihua, Zhang Tianlun, Dai Yingying, Lin Jinheng and Chen Lei. A Serial-Parallel Self-Attention Network Joint With Multi-Scale Dilated Convolution, IEEE Access, 9(5), 2021: 71909-7191.