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Abstract: In this article, we consider the quadratic singular perturbation problems with 

Nonmonotone Transition Layer Properties. Under certain conditions, solutions are shown to 

exhibit nonmonotone transition layer behavior at turning point t=0. The formal 

approximation of problems is constructed using composite expansions, and then 

approximation solutions of left and right sides at t=0 are joined by joint method which 

exhibits spike layer behavior and boundary layer behavior respectively. As a result, an 

approximate solution is formed which exhibits nonmonotone transition layer behavior. In 

addition, the existence and asymptotic behavior of solutions are proved by the theory of 

differential inequalities.  
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1. Introduction 

In this article, we address the quadratic 

singular perturbation problems of the form 
2 2( ) ( , ) 0,x f t x g t x a t b  + + =   ，               

（1） 

BbxAax == ),(,),(  ，                  

（2） 

where 0  is a small parameter, 

)0(, baba  and BA, are constants. 

It is well-known that such a singularly 

perturbed problem has solutions with interesting 

characteristics like boundary layers and interior 

layers. Howes [1] has proved the presence of a 

solution to the problem (1), (2) exhibiting 

boundary layer behavior under the hypothesis that

)(tf is either positive or negative everywhere in

[ , ].a b

In his other work [2,3], Howes showed that 

solutions of (1), (2) can exhibit shock layer 

behavior in neighborhood of points where f

vanishes. Other types of interior layers are also 

seen, including spike layers and nonmonotone 

transition layers. Spike layer behavior can be 

described as non-uniform limiting behavior of a 

solution in which the solution has an interior 

maximum or minimum inside the layer. In [4], 

Feng and Liu studied problem (1), (2) using the 

method of differential inequalities, and gave 

sufficient conditions for spike layer behavior. An 

analysis of nonmonotone transition layers 

problems can be discovered in DeSanti [5] and 

Liu [6], who studied the general quasilinear 

problem. 

The present paper is concerned with 

nonmonotone transition layer phenomena of 
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problems (1), (2), which occur when f  has a 

certain type of turning points at ),( ba , say 0.t =  

We say that a solution ),( txx = to problem(1), 

(2) exhibits nonmonotone transition layer 

behavior at 0=t  if  
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(3) 

where )0()0( RL uu   , and 

)}0(),0(max{ RL uus   or )}0(),0(min{ RL uus  . 

We have constructed a formal approximation 

using the method of composite expansion [7]. It 

is then shown, using the theory of differential 

inequalities [8], that problem (1), (2) has a 

solution with the desired properties. 

2. The Formal Approximation 

For simplicity, we have considered only 

zero-order approximations of solutions, although 

higher order approximations can be constructed 

and verified using the same methods. Assume  

][ 1H there exist functions )(tuL
 and 

)(tuR
 of 

2C  on ],[ ba satisfying the reduced 

problems 

               

Aauutgutf ==+ )(,0),()( 2                    

(4) 

and 

Bbuutgutf ==+ )(,0),()( 2      

               (5) 

respectively，so that )0()0( RL uu  ; 

][ 2H   )3(],[)(  nbaCtf n  satisfying

0)0()0()0( )1( ==== −nfff    and 

0)0()( nf ; 

3[ ]H  1( , ) ([ , ] )g t x C a b R  , and there occurs a 

number 0l  such that (0, )xg x l − . 

First, we search an outer solution in the 

form  

0

( , ) ( ) j

j

j

U t u te e
¥

=

= å                     

(6) 

Substituting (6) into (1) and (2), and equating 

coefficients of 
0 , we see that )(0 tuu L=  and 

)(0 tuu R= solve less problems (4) and (5) 

respectively. Hence, we can take 

( ) ( ) ( )Lu t u t a t b=    or ( ) ( ) ( )Ru t u t a t b=    as a 

zero-order approximation of the outer solution. 

Since (0) (0)L Ru u ，to be able to construct 

correction terms near 0=t in the form  

0

( , ) ( ) j

j

j

V v   


=

=                      (7) 

with 
t




= . Substituting (6) and (7) into (1), we 

get 

2

2

2 1
( ) ( ) [ ( , ) ( , )] 0V f U V f V g U V g U ，   

 
+ + + + − =&& & &     

(8) 

where 
d

dV
V =   and 

2

2

d V
V

dx
=&&  . From hypothesis 

][ 2H , it follows that 
( ) ( )

( ) ( ) ( 3, 0 1)
!

n
nf

f n
n


  =                   

(9) 

Equating the coefficient of 
0 in (8) yields 

0( ) 0v g v+ =&& % ，                        

(10) 

where 0 0 0 0( ) (0, (0) ) (0, (0))g v g u v g u= + −%  , 

0 (0) (0)Lu u=  or )0(Ru . 

Without loss of generality, we choose

)0()0(0 Luu =  in (10)，and write the correction 

term 0 ( )Lv v =   corresponding to ( )Lu t  .Since a 

s p i k e  i s  a s s u m e d  t o  b e  

at 0t = , ( )Lv   must satisfy the following 

conditions 
(0) 0, (0) 0L Lv c v=  =&

，                  (11)  

and 

0)()( =−=− LL vv 
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.                      (12) 

It follows from (10) and (12) that 
2

0
2 [ (0, (0) ) (0, (0)]

Lv

L L Lv g u z g u dz= − + −&

.           (13) 

And from the second formula of (11), (0) 0Lv =& , 

yields  
(0)

0
[ (0, (0) ) (0, (0)] 0

Lv

L Lg u z g u dz+ − =
.            (14) 

Consequently,  

0
[ (0, (0) ) (0, (0)] 0

Lv

L Lg u z g u dz+ − 
.               (15) 

by using (15), we get 

0
( ) [ (0, (0) ) (0, (0)]

Lv

L L LG v g u z g u dz= − + −      

       (16) 

From (13), we see that ( )Lv  could be expressed 

implicitly 
(0)

(0)

, 0 (0)
2 ( )

| |

, (0) 0
2 ( )
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L
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L L
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G z
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              (17) 

In order to illuminate (0) 0v c= ¹  (without 

loss of generality let 0c ), the following known 

result in Clement and Sweers [9] need to be used. 

Lemma 1. Let )(wh   be a continuously 

differential function satisfying that  

][ 1A  there are numbers 2 1 0w w> >  so that 

1 2( ) ( ) 0h w h w= =  , ( ) 0h w >  

for 1 2w w w< < , h  changes sign at 1w ,and 

(0) 0h ³ ; 

2[ ]A  
2

2( ) 0, 0 ,
w

h w dw w
q

q> £ £ò           

Then, there is a 0r >   so that the following 

problem has a 2C  , radially symmetric solution 

)(rw : 

                          1 2

( ) 0

(0) ( , )

(1) 1

( ) 0, 0

w h w

w w w

w

w r r

rì D + =ïïïï Îïï
í
ï = -ïïï ¢ < >ïïî

                          

(18)                                                       

The function 

( ) (0, (0) ) (0, (0))L L L Lg v g u v g u= + −%  satisfies 

conditions ][ 1A  and ][ 2A   in Lemma 1 has been 

by Feng and Liu [4]. Define 

                               
( ) ( )w r  =                             

(19) 

where =r  , w   and    are given by 

Lemma 1. Then  
2

2

1 1
( )

w w
w

r rr
   



 
 = + = +


&& &                     

(20) 

Hence, by Lemma 1 and (20), we get 

                           
1

( ) 0g  


+ + =&& & %                          

(21) 

Since 0 &  for 0x > , (21) can be written as  

                          
1

( ) 0gf f f
x

+ = - >&& &%                         

(22) 

Using the symmetry of to 0= , ( )  is a lower 

solution of (10). Also, obviously 
2)( w   is 

an upper solution of (10). Thus, we have 
( ) ( ) ( )Lv                             

(23) 

In particular, 

                             

2(0) (0)Lv w                          (24) 

This means that ( )Lv   has a spike at 0x = . 

Again,Feng and Liu[4] has provided that 

given any 0 kd< < , 

    
( ) (exp( ( ) | |)) ( )Lv O k   = − − →                

(25) 

where (0) (0, (0)) 0.x x Lk g g u= − = − %  In other 

words, ( )Lv   is exponentially small term as 

. →  

Consequently, here we can obtain a zero-order 

approximation of equation (1) satisfying the 

reduced problems (4)  
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0 ( , ) ( ) ( )L L

t
x t u t v


= +      

                 (26) 

which has a spike at 0t = . 

Next, we turn to construct the boundary layer 

correction terms using reduced solution 

0 ( ).Ru u t=  Taking 
0 (0) (0)Ru u=  in (10)，we write 

t h e  c o r r e c t i o n  t e r m  

0 ( )Rv v = corresponding to ( ).Ru t  Since a spike is 

a s s u m e d  t o  b e  a t  0=t  ,  

( )Rv   must satisfy the following conditions 

(0) (0) (0), (0 ) 0R L R Rv c u u v += + − =&                 

(27) 
                   ( ) ( ) 0R Rv v+ = + =&                        

(28) 

where (0) (0)L Rc u u −  or (0) (0)L Rc u u − −  . We 

consider only the case that (0) (0)L Ru u   and 

(0) (0)L Rc u u − , since the other case is similar. 

As discussed before, taking 
0 ( ) ( )Rv v =  in 

( 1 0 ) ,  a n d  u s i n g  c o n d i t i o n s 

(25), (27), we see that the solution ( )Rv x   on 

[0, )+ ¥ could be expressed implicitly as 

(0) 2 ( )

R

R

v

v

dz

H z
 =                       

(29) 

in which 

0
( ) [ (0, (0) ) (0, (0))]

z

R RH z g u z g u dz= − + −      

  (30) 

Similarly, it turns out that given any 

1 10 k  , 

1 1( ) (exp( ( ) )) ( )Rv O k   = − − → +      

    (31) 

Where 1 (0, (0)) 0x Rk g u= −   . In other words,

( )Rv   i s  e x p o n e n t i a l l y  s m a l l  t e r m  

As . → +  

Finally, we join the approximation solutions 

of left and right sides at 0t =   by joint method 

which exhibits spike layer behavior and boundary 

layer behavior respectively. This leads to 

constructing a zero-order approximation of 

problem (1), (2) in the form 

0

( ) ( ) , 0,

( , )

( ) ( ) , 0 ,

L L

R R

t
u t v a t

x t
t

u t v t b







+  


= 
 +  


     

   (32) 

where )(tuL
  and )(tuR

  solve the reduced 

problems (4) and (5), 
Lv   and 

Rv  are given by 

(17) and (29) satisfying joint condition 

(0) (0) (0)R L Rv c u u= + − .                    

(33) 

3. The existence and asymptotic behavior of 

solutions 

Using the theory of differential inequalities, 

a solution to the problem (1), (2) was shown, 

which exhibits nonmonotone transition layer 

behavior at t = 0. An important consequence of 

this method is that in the course of proving the 

existence of solutions, we obtain simultaneously 

an evaluation of this solution in terms of the 

solutions of appropriate inequalities. 

Theorem 1. Assume 1 3[ ] [ ]H H−  , under the 

condition (33). Then, for    sufficiently small, 

say 
00 e e< <  , problem (1), (2) has a solution 

),( tx  with 

                            

0( , ) ( , ) ( )x t x t O  = +                     (34) 

as 0→ , uniformly on ],[ ba . More precisely, 

)(),( tutx L→ for x  in )0,[a , 

)(),( tutx R→  for x   in ],0( b   and 

)0()0(),0( LL vux +→  as 0→ , 

where 0)0( Lv   if )0()0( RL uu   . It is to say 

),( tx  shows nonmonotone transition layer 

behavior at 0=t . 

Proof. We consider only the case (0) (0)L Ru u  

and (0) (0)L Rc u u − .  

First, we claim that there exists a solution on 

],[ ba of the boundary value problem 
2 2( ) ( , ) 0,x f t x g t x a t b  + + =   ,             

(35) 
( , ) , ( , ) ( )Lx a A x b u b = =                     
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(36) 

Defining on the interval ],[ ba , 

     

( , ) ( ) ( )L L

t
t u t v r  


= + −                      

(37) 

( , ) ( ) ( )L L

t
t u t v r  


= + +                      

(38) 

where 0r > is a constant to be determined below. 

From the construction of formal approximation, 

by using (35) and (37), we have 
2 2( ) ( , )f t g t    + +                         

         
( ) (0, (0)) ( )L L x Lv g v g u r O = + − +&& %               

(39) 

It follows from (10) and 
3[ ]H  that      

      
2 2( ) ( , ) ( ) 0f t g t lr K     + +  −  , a t b£ £ ,         

(40) 

if r is chosen so that 
K

r
l

 , and 0K  

satisfies | ( ) |O K  . 

Use the similar process of (40), we have 
2 2( ) ( , ) ( ) 0f t g t K lr     + +  −              

(41) 

Moreover, clearly, ),(),(  tt  for bta  , 

and by (25), ( )L

a
v


and ( )L

b
v


 

are exponentially small terms as 0→ , thus, 

for   sufficiently small, yields 

                            

),(),(  aAa                      

(42) 

                            

),(),(  bBb                      

(43) 

According to the theory of differential 

inequalities [8], we concluded that there is a 

solution ( , )x t =  to problem (35), (36) so that 

                      
( , ) ( , ) ( , ),t t t a t b                         

(44) 

Thus, it can be seen that 

                      

( , ) ( ) ( ) ( )
t

x t u t v O 


= + +                        

(45) 

as 0→ , uniformly on ],[ ba . 

Specifically, by (44), we get 
(0, ) (0, ) (0, )            

                  (46) 

Next, it can be shown that there exists a solution 

on [0, ]b  of the boundary value problem 

    
2 2( ) ( , ) 0, 0x f t x g t x t b  + + =    ,             

( 4 7 ) 

                     

(0, ) (0, ), ( , )x x b B   = = .                      

(48) 

Defining on the interval [0, ]b , 

                     

1 1( , ) ( ) ( )R R

t
t u t v r  


= + − ,                      

(49) 

1 1( , ) ( ) ( )R R

t
t u t v r  


= + +  ,                     

(50) 

where 1 0r  is a constant to be determined 

below. From the construction of formal 

approximation, by using (47) and (49), we have  
2 2

1 1 1( ) ( , )f t g t    + +                           

1( ) (0, (0)) ( )R R x Rv g v g u r O = + − +&& %                      

(51) 

It follows from (10) and 3[ ]H  that  

              
2 2

1 1 1 1( ) ( , ) ( ) 0f t g t lr K     + +  −  , a t b£ £ ,           

(52) 

if 1r   is chosen so that 1

1

K
r

l
  , and 1 0K   

satisfies 1| ( ) |O K  .         

Use the similar process of (52), we have 

                 
2

1 1 1 1( ) ( , ) ( ) 0f t g t K lr    + +  −  .                   
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(53) 

Moreover, clearly, 
1 1( , ) ( , )t t     for bta   , 

and by (31), ( )R

b
v


is exponentially small term as 

0→  , thus, for    sufficiently small, yields 

1 1( , ) ( , )b B b     .                    

(54) 

Again, note that 
1(0,0)= (0,0)   ,

1(0,0)= (0,0)  , according to (46), satisfies 

         

1 1(0, ) (0, ) (0, )                      (55) 

for   sufficiently small. Based on the theory of 

differential inequalities [8], we arrived at a 

conclusion that there is a solution ( , )x t =  to 

problem (47), (48) so that 

1 1( , ) ( , ) ( , ), 0t t t t b                    (56) 

Let us finally define 
( , ), 0,

( , )
( , ) , 0 ,

t a t
x t

t t b

 


 

 
= 

 
     

           (57) 

Putting everything together, we see that ( , )x t  is 

a solution to problem (1), (2), with 

0( , ) ( , ) ( )x t x t O  = +                    (58) 

as 0→ , uniformly on ],[ ba . More precisely, 

)(),( tutx L→ for x  in )0,[a , 

)(),( tutx R→  for x   in ],0( b   and 

(0, ) (0) (0)L Lx u v → +  as 0→ , 

Since 











=



=
→

,0),(

,0,

,0),(

),(lim
0

bttu

ts

tatu

tx

R

L




                 

(59) 

where (0) (0)L Ls u v= +  . When (0) (0)L Ru u>  , we 

have (0) 0Lv > and the result is  

max{ (0), (0)}L Rs u u>  . That is to say, ( , )x t e  

exhibits nonmonotone transition layer behavior at 
0t = , and the proof is complete. 

4. Examples 

Consider the boundary value problem 
2 3 2 2 ( ) sin 0, 1 1x t x t x x x x t  + + − − = −  

，          (60) 
( 1, ) 0, (1, )x x  − = =

.                      (61) 

Here 3( )f t t= ， 2( , ) ( ) sing t x t x x x x= − − . The 

reduced problems are 
3 2 2 ( ) sin 0, ( 1) 0,t u t u u u u u + − − = − =      

           (62) 
3 2 2 ( ) sin 0, (1) .t u t u u u u u  + − − = =      

           (63) 

These problems have solutions ( ) 0Lu t  and 

( )Ru t   respectively，so that (0) (0)L Ru u¹ . It 

is thus clear that conditions of assume
1 3[ ] [ ]H H−  

are satisfied. 

Now, ( ) sinL L Lg v v v= −%  satisfies 

( ) (2 ) 0g g = =% % , ( ) 0Lg v %  for 2v   ,                  

and  
2 2

( ) ( sin ) 2 cos sin 0
L L

L L L
v v

g z dz z z dz v v v
 

= − = − +  %          

(64) 

for 0 2Lv    . The function ( )Lg v%  satisfies 

conditions 
1[ ]A  and 

2[ ]A in Lemma 1. Define 

0
( ) ( ) cos sin

Lv

L L L LF v g z dz v v v= = − %                  

(65) 

then ( ) 0F  = −  ,
3

( ) 1 0
2

F


=  . Thus, by the 

intermediate value theorem there is 
3

2
c


    

so that ( ) 0F c = . Consequently, all conditions of 

Theorem 1 are satisfied. We deduced that 

problem (60), (61) has a solution ),( tx  

satisfying 

0

0, 0,

lim ( , ) , 0,

, 0 ,

a t

x t c t

t b





→

 


= =
  

                

(66) 

Since 
3

2
c


    , it means that ),( tx  exhibits 

nonmonotone transition layer behavior at 0=t . 

Today, the issue of nano is one of the serious 

issues that is used in many fields and industries 
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