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Abstract

Mammalian adipose tissue is comprised of two main types of adipocytes, white and brown, which
inversely contribute to energy balance regulation. White adipocytes possess a large unilocular
lipid droplet, reside in white adipose tissue (WAT), and store excess energy as fat. Brown
adipocytes, on the other hand, possess a multilocular appearance (multiple small lipids droplets),
reside in brown adipose tissue (BAT), consume energy reserves, and produce heat. Brown
adipocytes have an enormous capacity for substrate oxidation conferred by a very high
abundance of mitochondria. These mitochondria are equipped with uncoupling protein 1 (UCP1),
a 32 kDa protein residing in the inner mitochondrial membrane. When activated by sympathetic
nerves that control the lipolytic release of activating fatty acids and the degradation of inhibitory
purine nucleotides. White adipocytes possess a large unilocular lipid droplet, reside in white
adipose tissue (WAT), and store excess energy as fat. Brown adipocytes, on the other hand, possess
a multilocular appearance (multiple small lipids droplets), reside in brown adipose tissue (BAT),
consume energy reserves, and produce heat.UCP1 induces a proton leak that uncouples oxygen
consumption from ATP production, facilitating macronutrient catabolism. This adaptive
mechanism increases energy expenditure and makes BAT an important heater organ, especially in
small mammals,there are several factors associated with the formation of brown fat cells such as
PGC1q, CIDEA, PRDM16, PPar1a and so on.
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Introduction

Mammalian adipose tissue is comprised of two main types of adipocytes, white and brown,
which inversely contribute to energy balance regulation. White adipocytes possess a large
unilocular lipid droplet, reside in white adipose tissue (WAT), and store excess energy as fat.
Brown adipocytes, on the other hand, possess a multilocular appearance (multiple small lipids
droplets), reside in brown adipose tissue (BAT), consume energy reserves, and produce heat.

Brown adipocytes have an enormous capacity for substrate oxidation conferred by a very high
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abundance of mitochondria. These mitochondria are equipped with uncoupling protein 1
(UCP1), a 32 kDa protein residing in the inner mitochondrial membrane. When activated by
sympathetic nerves that control the lipolytic release of activating fatty acids and the degradation
of inhibitory purine nucleotides [[1, 2]], UCPI induces a proton leak that uncouples oxygen
consumption from ATP production, facilitating macronutrient catabolism. This adaptive
mechanism increases energy expenditure and makes BAT an important heater organ, especially in
small mammals [[3, 4]]. The same mechanism is found in brown-like adipocytes which have
been given multiple names such as ‘inducible’, ‘beige’, or ‘brite’ (brown-in-white) referring to
their brown adipocyte-like appearance and function but are found in WAT depots. Brown and
brite adipocytes are distinct cell types, yet their transcriptomic signature and cellular function
become remarkably similar under conditions that enforce adaptive heat production [[5-8]]. Brite
adipocyte recruitment (a process called ‘browning of WAT’) is enhanced upon BAT loss,
suggesting that these cells complement brown adipocyte functions [[9, 10]].

Nuclear factors regulating brown versus white adipogenesis:

It wasdiscovered that there are several factors associated with the formation of brown fat cells

such as PGCla, CIDEA, PRDM16, PParla and so on.
PRDM16:

Is considered the master regulator of brown adipogenesis, as it stimulates differentiation of
Myf5-positive myogenic precursor cells into brown fat cells. Increasing the expression of
PRDMI6 leads to increased expression of BAT selective genes in beige fat cells. PRDMI16 is a
140-kDa zinc-finger PR (PRD1-BF1-RIZ1 homologous) which contains protein that stimulates
gene expression process as well as oxygen consumption with the brown phenotype. It was shows
that PRDM16 has the ability to activate both PGC-1a and PGC-1B so it can induce brown
genes while suppressing white genes. Also he suggested that PRDM16 binds to specific
transcription factors that related to enhancers of the target gene that this association might
determine if PGC-1a, PGC-1B or CtBPs initiates the formation of either a coactivator or
corepressor complex. Eventually PRDM16 is needed for mitochondrial biogenesis, oxidative

phosphorylation and oxidation of lipids which consider function of BAT (11).
PGC-1a:

It considers one of master regulators of mitochondrial biogenesis and oxidative metabolism in
most cell types including brown cells and skeletal muscle. Decrease of genetic expression of PGC-
la leading to reduction in the capacity of cold-induced thermogenesis in vivo in cultured brown
fat cells. Expression of PGC-1a induces expression of UCP1 (12).

Studiesshowed that there are groups belonging to steroid receptor coactivator as
SRC2/TIF2/GRIP1 played role in suppression of PGC-1a activity and losing of SRC2 function
leads to increasing of adaptive thermogenesis and energy expenditure. Lastly, TWIST1 (a helix
loop helix containing transcriptional regulator) has been reported as a negative regulator of PGC-

la in brown fat, so suppression of TWIST1 leads to increasing the expression of PGC-1a which

5907
Tob Regul Sci.™ 2023 ;9 (1):5906-5914


https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15470#febs15470-bib-0001
https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15470#febs15470-bib-0002
https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15470#febs15470-bib-0003
https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15470#febs15470-bib-0004
https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15470#febs15470-bib-0005
https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15470#febs15470-bib-0008
https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15470#febs15470-bib-0009
https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15470#febs15470-bib-0010

Alaa Kandeel et. al
Regulation of Brown Versus White Adipogenesis; Mode of Action and Regulatory
Mechanism

leading to increasing expression of brown fat selective genes. So according to these studies it has
been suggested that PGC-la plays a role in brown fat development and its thermogenic
function, but not all of the BAT mass are affected by its reduction (12).

CIDEA:

CIDEA (cell death-inducing DNA fragmentation factor-a-like effector A) was known as
their sequence similarity at the N terminal region of the apoptotic DNA fragmentation factor
and a member of CIDE family proteins which also include two other types CIDAB and Fsp27 in
mice . It has been shown that it has a role in energy hemostasis. In human CIDEA is highly
expressed in WAT also inhibiting lipolysis in human adipocyte, but in mice it’s highly expressed
in the mitochondria of brown adipose tissue. Also is consider a promotor for PPar-a and y in

liver (13).
PPar-a:

Peroxisome proliferator-activator receptors (PPARS) are a group of the superfamily nuclear
transcription factors that are responsible for regulation of lipid metabolism. PPar-a was the first
genetic sensor for fat discovered in the early 1990’s. There were two additional receptors was
discovered known as PPar-B and PPar-y. It played a role in fatty acid oxidation mainly in liver
also in skeletal muscle. In PPar-a null mice found that they haven’t the ability to meet energy
demands during their fasting leading to suffering from hypoglycemia, hyperlipidemia,
hypoketonemia and fatty liver. Also it was discovered that PPar-a stimulators increase insulin
sensitivity and reduce adiposity and improve hepatic and muscle steatosis. It was discovered that
estrogen has effect to PPar-a as it inhibits its activation on obesity and lipid metabolism by

targeting PPar-a dependent regulation of target genes (14).
Autocrine and paracrine factors of BAT:

In the past two decades, several molecules where secreted from WAT called adipokines was
discovered after the initial discovery of leptin which is a hormone made by adipose cells and
enterocytes in the small intestine which regulates energy balance which might induced during
brown adipose differentiation or/and thermogenic activation have been identified. Researchers
were thought that these adipokines are poorly expressed in BAT which led to assume that BAT
only has a limited secretory role, but it has been discovered that BAT has a specific source of
regulatory molecules that called adipokines or batokines, these molecules secreted by activated
BAT which might expected to support in glucose and lipid metabolism or coordinate with BAT
activity with systemic metabolism (15). Although limited direct experimental evidence exists for
the specific actions of these batokines, researchers might suggest that some might have autocrine

and/or paracrine roles.

Osteopontin (OPN):
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Is a glycoprotein which is found in osteoblasts and acts as a bridge between cells and
minerals which encoded by the phosphoprotein-1 (SPP1) gene and transcribed into three
isoforms OPN-a,-b and -c (16).

OPN was considered as T helper type 1 cytokine which involved in physiological and
pathological condition in bone, kidney, inflammation and tumor biology (16). Also, it plays a
role in various inflammatory disorders as rheumatoid arthritis atherosclerosis and cardiac fibrosis

which all related to obesity also in regulation of immune cell function (17).

OPN is classified into intracellular OPN (iOPN) which is responsible for cell adhesion and
movement and secreted OPN (sOPN) which plays a role through its corresponding receptors. It
has been shown that OPN mRNA is highly expressed in obese individuals, so it suggested that it
plays a role in energy hemostasis, but It has been thought that OPN might have the same
capacity as bone morphogenetic proteins (BMPs) which responsible for stimulate browning of
WAT as well as OPN might induce the browning of WAT in 3T3-L1 cells via a PI3K-AKT
pathway (19).

Sex hormones and energy homeostasis:

Studies reported that sex hormones such as estradiol playing a role in regulation of energy
balance. for example, in case of ovariectomized rodents or post-menopausal women resulting
estrogen deficiency which leading to increase in body weight, but this can treat by steroid
hormones such as inducing phytoestrogen or 17B-estradiol. Any disorder such as obesity,
anorexia and cachexia may effect energy metabolism as sex steroids hormones (estrogens,
androgens and progestins) are playing an important role in regulation of this metabolism and

also may associated with another kind of diseases as diabetes and cardiovascular diabetes (20).

o Estrogens: estrogens are steroid hormones which present in high levels in females and
low level in males. There are three main forms of estrogens in mammals, estrone (E1), 17B-
estradiol (E2) and estriol (E3). E2 is consider the most active metabolite which secreted during
premenopausal women in the growing follicles. While during pregnancy, placenta is responsible

for producing higher level of estrogens mainly E3 (21).
> Mode of action and regulatory mechanism:

Estrogens mediate their biological action through binding to estrogen receptor (ER). There
are two kinds of these receptors: ERa and ERP and each one has several isoforms. Activation of
ERs occurs through two pathways, classical and nonclassical. The classical pathway involves
creating ligand activated transcription factors that form dimers directly binding to an estrogen
response element (ERE) producing gene expression. The other nonclassical pathway doesn’t
include ERE. It might indirectly bind to DNA through protein-protein interactions with other
DNA-binding transcription factors (22).
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Figure (1): Classical and non-classical mode action ER. (23).
> Estrogen and control of homeostasis:

Studies have reported that estradiol played an important role in the control of energy homeostasis
centrally through hypothalamus and peripherally through hormonal regulation such as
adipokines and insulin. E2 acts at a peripheral level to regulate multiple aspects of energy
homeostasis and metabolism. It modulates insulin sensitivity by acting on pancreas, liver, and
skeletal muscle. E2 also acts on white adipose tissue (WAT) to control fat distribution,
differentiation, and fibrosis and on brown adipose tissue (BAT) to induce thermogenesis. In
addition to these effects, E2 also impacts the hypothalamus to regulate BAT function through
the sympathetic nervous system (SNS) and food intake. Obesity occurs more often in
postmenopausal than premenopausal due to the low level of estrogen. Also, in ovariectomized
rats were hyperphagic with higher body weight. Current studies reported that estrogen interferes
with fat distribution, differentiation and lipid metabolism. Postmenopausal women suffer from a
change in fat distribution which leads to accumulate intra-abdominal fat that was prevented by
estrogen supplying. In ovariectomized rats, both central and peripheral administration of
estradiol restores fat distribution to normal. Estrogen synthesized in the adipocytes which
enhance browning of the adipose tissue; females have a higher metabolic rate than males as well

as expression levels of uncoupling protein (UCP-1) (24).
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Figure (2): Peripheral and central actions of 17b-estradiol (E2) on the regulation of energy
homeostasis. (25).

Phytoestrogens:

Phytoestrogens are nonsteroidal compounds that bind with ERa and Erf due to their structure
which resembles estradiol. the common feature of all phytoestrogens as in shows at least two
hydroxyl groups which responsible for the interaction between phytoestrogens and estradiol

receptors. that helps in prevention of postmenopausal symptoms and cardiovascular disease (26).
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Figure (3): Chemical structures of the main phytoestrogens beside the molecular structure

of estradiol (27).

Phytoestrogen divided into two groups: flavonoids (which include isoflavones and coumestans)
and non-flavonoids (including lignans and resorcinol derivates). Isoflavones are the largest group
in flavonoids that are found in nonactive hydrophilic glycosides such as daizin, genistein and
glyctin.in GIT due to presence of B-glucosidases, nonactive isoflavones turned to bioactive

isoflavones for example daidzin to daidzein, genistein to genistein and glyctin into glycitein (27).
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Isoflavones were found in soybean and soybean derived products (alfalfa, clover, Kudzu root) at
different concertation. They consider the most present phytoestrogens in the human
environment as soybeans used for both soy-based foodstuffs and transformed foodstuff (27).
They are a major source of xenoestrogen in both human and animal. Several studies showed that
phytoestrogen played a role in reducing obesity and improving glucose control. Also, they
showed that exposure mice to phytoestrogens associated with increased energy expenditure, but
its metabolic action on lipid metabolism and fat metabolism still not determined (28). As it has
been shown that phytoestrogen decreases both LDL and total cholesterol levels and increases
HDL level. So far, only genistein and resveratrol (RSV) has found that they have direct effect in
obesity. In agouti mouse found that genistein supplement protected them from obesity by
increasing DNA methylation at the transcription site at agouti mouse (29). Also several reviews
addressed that there is a link between phytoestrogen and metabolic syndrome which is known to

reduce the risk of it. Recent study showed that genistein (GEN) has the ability in browning of
WAT and lipid metabolism (30).
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