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Abstract

The suspension system in vehicles plays a vital role in improving driving comfort and safety. Many
researchers regarded the structure as rigid when investigating the behavior of the car's suspension
and chassis with various driving conditions and unregulated road conditions. They have faced
certain challenges to: ensure safety, driving comfort, and contact of the wheels with the road all
the time, especially when turning at different road conditions. The purpose of this paper is to
consider the flexibility of the structure during the design stage of the vehicle. especially when
converting the suspension system from a passive suspension system to an active suspension
system. Using finite element technique and MATLAB to obtain mass and stiffness matrices, which
are to define the "state space". The optimal system can be designed using the Linear Quadratic
regulator technique (LQR). The results show that case for converting the system from its passive
state to an active state, So, it is necessary to consider the chassis flexibility during design, especially
for cars that have long wheelbases.

Keywords (1) Finite element method (2) Beam equation (3) Half vehiclemodel (4) Simply
supported beam
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1.Introduction

Passive and active suspension systems for automobiles have been extensively studied, while a few
predictions of the capabilities of dissipative and slow active systems have been considered. Most
of the work surveyed here is limited to passive, active, semi-active, etc. The optimal control
theory for the suspension of passenger cars does not include chassis flexibility; this means they
relate to compact automobiles, but for long-wheelbase vehicles, chassis flexibilicy will affect
suspension system performance. Just a few searchers consider this effect, but for a simple model,
they represent the vehicle chassis with a beam [1]. Considering the conventional two-Dof model
as a rigid chassis, which developed into a flexible chassis, the comparison between both cases
found that the flexible chassis was impacting the system [2]. Also, D. A. Crolla Proved by the
comparison of the responses of the rigid and flexible body models, it has been found that the
framing flexibility strongly affects the accelerations of both the driver and the truck body.
Therefore, frame flexibility effects must be taken into account in the design of the cab and engine

suspension systems [3]. Then they analyzed and designed a Hydropneumatics limited bandwidth
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active suspension system [4]. The effect of the vehicle chassis flexibility on the dynamic response
is analyzed and evaluated based on the maximum car center acceleration [5]. It is concluded that
the increase in flexural stiffness of the car body can lead to a notable decrease in its maximum
acceleration [6]. Finally, the main goal of this work is to study and modify the passive system to
the active suspension system for vehicles, taking into account chassis flexibility using a half-
vehicle dynamic analysis system package in conjunction with a finite element program. In this
paper, the linear quadratic regulator LQR is a special type of optimal control used in active
suspension [7 and 8]. The Riccati equation is used to optimize linear LQR tuning parameters to
achieve the desired output response. The robustness of the control system will be tested within a
simulation in MATLAB software. Also, the present report covers half the vehicle models
described by their first vibration modes, which are achieved by the finite clement model.
Additionally, the solution is obtained by evaluating the dynamic equation of motion in a state

variable, additionally with the application of linear optimal control theory.
2. A half model of a vehicle and the governing equation

Figure (1) shows the model of a half vehicle that subjected the irregular excitation from a road
surface at the front/rear wheels. We consider the excitation acts at the chassis tip. where m is the
mass for the vehicle body, I4 is the mass moment of inertia for the vehicle body, mjand m,
are the masses of the front/rear wheels respectively, Csr and Cg, are the damping coefficientsof
front /rear suspensions respectively, Ksr and kg are the spring stiffness of front/rear
suspensionsrespectively, Kir and Ky, are the stiffness of front/reartires respectively. x4 is the
vertical displacementof the vehicle body at the center of gravity, ¢ is the rotary angle of the
vehicle body at the center ofgravity, X and Xy are the vertical displacements of the front/rear
wheels, ¥¢ and y, are theirregular excitations from the road surface, ajand ayare the distances of
the front/rear suspension locations, regarding the Centre of gravity of the vehicle body and

a1+a2=L

Figure (1) Half-vehiclemodel

The beam's transverse deflection uy (x) is governed by the Euler-Bernoulli beam theory [9, 10] as

a fourth-order differential equation.

dz d2
d(xq)? [yd (xq) d(x_Z§z] = f(xq,uq), 0<x; <L(1)
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Subject to boundary conditions.

d%uq(0) d*uq (L)
ug(0) = (ua)o, d&j)z =@y ug(L) = (uadr, d&‘:)z =¢L. (2

Assume the function y;(x4) = I * Eis constant, where (I, E)are the beam's moment of inertia
and modulus of elasticity, respectively. In the linear case, the transversely distributed load is
f(xq,uq), which equalsqq(xg) * ug(xq) + pg(xq), whereuy(xy)is the beam deflection,
qq(xq) is the coefficient of ground elasticity, and pg(xg) is the uniform load applied to the

beam. Substituting the value of equation (1), we get the following.

d? [ d%uy

(dxq)? (dxd)z] = qa(xg)ug(xq) + pa(xq), 0<x4 <L, (3)

When the beam is fixed at ends anduy (0) = 0, the solution of u; (x,)describes the deflection of

the beam under the loadpy(x4). In this case, the governing equations become as following

equation.
dz dzud _
(dxq)? [ I(dxd)z] =pa(xg), 0< x4 <L, (4)

We will utilize the Galerkin Finite Element Method (FEM) to solve equation (4) [11].
3.GalerkinFinite Element Method

Figure 2 shows the system after divided into 6 elements that have 2 nodes. For simplicity, we

assume chassis as two elements only.

4 _T_ b
va [ "8 L] [ e
o —1

2 . | =1
[2] -1
= ” =z

Figure 2 system divided into elements

Figure (3) shows a beam (chassis) element that has two degrees of freedom per node,u;,q;
represents displacement and deflection of node (i) respectively, u;41 and ;41 represents

displacement and deflection ofnode (i + 1)*respectively. The length of the element is I, [2].

gy (i) g (i + 1)

@ (i)

% /i)«p(!nLl)

@ G +1)

Figure (3) beam element
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Obtain the weak form from equation (4). Multiply the residual of a governing equation (4) by a
weight function N;(x,4) and integrate it by parts to evenly distribute the order of differentiation

on Uy and N;(xg)toget the equation as follows:

Fl— N,d g L ’ g L ani|
fl G pd(xd)l Xa = l ICRE ] l dCe)? dg),

zNi d2u _
+f [ d(xg)? d(xg)? pdNi] dx; = 0(5)

We can rewrite equation (5) in the following form
¢ d*ug ! !
f El 4 _pd(xd) Nidxd =[E1uxxxNi]oe - [El(xd)xx(Ni)x]oe
0 d(xq)

L, !
+f0 EIN; yuyy dxq — f() paNidxg = 0(6)

After obtaining the weak form, we proceed to choose the suitable clements approximating
functions. It can be noted that the highest order of the derivative on (x) in the weak form (6) is
three; therefore, we choose an approximating function that is thrice differentiable. This request is
satisfied by the cubic interpolation polynomial where these cubic interpolation functions are

known as Hermit cubic interpolation functions.

N, = #(zﬁ —3x21, + (1)),

N2=

T (6%l = 222()° + 30,

N; = (—2x3 —3x21,),

(L )3

Ny = — (%31, = x*(1.)*)(7)

1
(le)?
Where Ny, Ny, N3, &NyAre called the shape functions for a beam element. For the beam

element, Ny =1 when evaluated at node 1 and N; = 0 when evaluated at node 2. From

equation (0) the stiffness matrix and force vector are given as follows

ldeN

(e) _
Ki,j Elf dx 2 dx?

dx

Where: KS) stiffness element

And the force vector is f; = fOL paN; dx for the first element
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I, d? Nld N1
fo dx2 dx? dx fO (L, )3 Ul )3

144 xl, + 36 (I,)%dx = @fo [48 x3 — 72x1, + 36xL,]§f

K& = (12x — 6l,) — (12x — 6, )dx [¢ 144x% —

e )6

= 5 [12()*] = 55(8) The

remaining elements are found similarly. The stiffness matrixfor any element becomes as follows

12 6(1,) 12 6(1,)
@ _ 8 |6) 4 —6(l,) 2()* |
o wWil-12 -6, 12 —6(l)|
l6(l) 2@1,)? -6(L) 4(1,)?]

)

Similarly, we can obtain the force vector matrix. The first value in the force vector is

Evaluate below.

le 3x2 _ x3 xt 1l _ (Le)*
(1=t (1)3)dx pa (17+2(1)3] pd<() (l)z zaﬁ)‘

Pa (%)(10)

The remaining values are obtained in a similar manner using their corresponding shape
functions. The resulting force vector (f (©)) is given as
1

f(e) Pdl 6:ie (11)

—6l,

The corresponding beam equation from equation (9), (11) can be represented as

(r@} = [£5] + wa)

6(l.) —12 6(,) rud,

pdzl ‘ 6(l) 4(1,)*  —6(l,) 2(16)2]%2 12)
(e )3 -12  —6(1,) 12 —6(l,)||Ud3
—6l 6(l) 2(1,)?  —6(l) 4(l,)? [1H%ds

The system of equations is solved by using MATLAB software. The element displacements were
solved under different conditions prescribed [13, 14].

3.1Stiffness matrix for a spring element:

The relation between the nodal force(f; ¢ f;) and nodal displacement (u;&;) of typical spring

element kg, at nodal springi and j respectively as shown in Figure (4) [13].

- b -

-8 VWA + -
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Figure (4) spring clement
Thus, the force at nodalsi and j can be expected as
fi= kse(ui — uj) (13)
fi = kse(w — u;)(14)

Or Equations 13,14 may be arranged as follows.

)= o) o

3.2 The global stiffness matrix for our case

From equations (12, 15) for the beam element and a spring element respectively (for simplicity

assume the beam is one element) we can get the global stiffness matrix(Kg) for the system as

follows
s _ksel? -
T T 0 0 0 0
ksel® kel
i 12 + o 6l —12 6l 0
_ EI —6l 212 0
Ke=%=1 o 6l 412 PNE P (16)
0 -12 —6l TR TR
0 6l 22 -6l 412 0
0 0 0 _ksel? kgol3
El 0 El

Use boundary condition in equation (16). Then a global stiffness matrix becomes as follows:

I[12 +"S€’ 6l 12 6l 1|

EI 2 _ 2

Ksys = l_3 6l 41 ?{l 132l |(17)
| -12 -6l 1245 el
| 6l 212 el 4]

3.3 The element mass matrix for the beam
M = f NTmN dx

Where: m= pAL ,N=[N; N, N3 N], we can get the value of (N) from equation (7). Now,

we can get the value of (NTN) as follows

N, NN, NN, NyN; NN,

N, NN, NN, N,N; N,N

™ =|"2|I[N;, N, N: N T — |NVolV1 NolNp NaplN3 o INp Vg
NN N3 [Ny Nz Na Nl ONTN N3N; N3N, N3N3 N3N, (18)
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1 1
Mis = {3 20)" = 3Ga) 1+ 1)) = £ @0)" = 3G+ 1Y

= 4(xg)® — 12(x)° L + 9(x)*12 + 4(xg)313 — 6x21* + 1°

Now,

L
1 4 9 17 /113 [ %156
— — 27 _ 977 1+ 277 7 _ 977 7~ (ZZ) =
l6fN1N1dxd 71 21 +51 +17=2"+1 l6<35) 220
0

For the elementN; N, we can do all elements of the equation (18) in the same way to get the

global mass matrix (19) for the beam in our system as follows:

156 221 54 —131

_pAL| 221 412 131 —3[?
M= 54 —131 156 —22I (19)
—131 =312 =221 4]>

4.Creation of State-space model

The state space representation is a mathematical model of a physical system as a set of input,

output, and state variables related by first-order differential equations. The state space is

converting the second-order differential equations for dynamic systems in the first-order state

space dynamic systems, which has a certain advantage over the second-order form descriptions.

The generalized state-space representation is as follows [15]:
Xss = (Ass)Xss"'(Bss)Fss (20)

yssz(Css)Xss+(Dss)u(21)

WhereAgs  the system matrix,Bgg the input matrix, Cgs theoutput matrix, Dgg the direct

transmission matrix.Xgg, u and Ygrepresent the state vector, input vector, and output

vectorrespectively. XsgUsed as the state variable to obtain the stateequations. Figure 4 show the

system after divided into element. We divide chassis into two elements

Where: -
2 [ 0 I ]
5T _Ms_y}e * Ksys _Ms_yls * Csys

0
BSS:[_Msys * F:sys]
Dssz[o]

Fss = [fsys ]

Where: -
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[As] Matrix (n*n)

[Bss] Matrix (n*m)

[Css] Matrix (r*n)

[Dgs] Matrix (r*m)

[Fys] Matrix(1*n)

(n) The number of Dof,(m) The number of inputs, (r) The number of outputs.
5.MATLAB solution tolinear quadratic regulator problem

Lqr is the type of optimal control that deals with linear systems and the minimization of cost.
MATLAB simulation associated with the Algebraic Riccati equation (ARE) to find solutions of
Lqr [16]. The value of the weighting parameters Q and R are needed in the determination of
optimal control gain of the systems, as they vary the minimization of the quadratic performance
index. In this report, Lqr control design is presented for the control of a half-car active
suspension system model. The Lqr design problem is to design a state feedback controller
(K)_gain such that the objective function ] is minimized. In this technique, a feedback gain
matrix is calculated to minimize the objective function to achieve some compromise between the

use of control, the magnitude, and the speed of response, thus guaranteeing a stable system [7].
5.1 The algebraic Riccati equation.

The algebraic Riccati equation (ARE) has been widely used in control system syntheses, especially

in optimal control and robust control. Consider the algebraic Riccati equation as follows
(Ass)TP + P(Ass) - P(Bss)(Ass)T +Q=0Q= 0(23)

Where(A)and (B)are real matrices has dimensions (n X n)and(n X m)respectively.Q is a
positive semidefinite real symmetric matrix. It is well known that(23) is associated with the

following linear system:
#(t) = Agsx () + BysUgain ()
x(0) = x0(24)
With the state feedback control
Ugain (t) = —Kjqin x(£)(25)

K

gain = R_l(Bss)TP (26)

The performance index

] = fooc(xTQx + (Ugain )T(Ugain))dt(27)
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5.2Design of control algorithms
5.2.1 Linear quadratic regulator (Lqr) controller.

The suspension system model has been represented in the form of state space as equation (20).
Thelqr control algorithm is designed to obtain the value of the control vector ‘u” such as to
reduce the cost function ‘J'that is given as equation (27). The value of the feedback control
vector ‘Uyqip” is defined as equation (25). The state feedback gain matrix ‘Kyq;, " is calculated
from equation (28). The matrix P is computed by solving the algebraic Riccati Equation (23).
Substituting the gain matrix ‘Kyq;,° and control vector ‘Uggn ™ in the state equation (25). We

obtain

J.C(t) = [Ass - BssKgain ]x(t) (28)

The four degrees of freedom half-car model is considered to analyze the behavior of the vehicle.
Figure (5) shows the schematic diagram of a half-car model. A vehicle model consists of three
bodies. One sprung mass and two unsprung masses. For the sprung mass, vertical and pitch
movement is allowed, and for the unsprung masses, only vertical movement of the front and rear

wheels.

Where:

X¢r Front tip displacement
X¢r Rear tip displacement

faf Linearrear variable displacement transducer

Xer— 1

Displacement and
angle transducer

7 "'”T

Figure (5) half car model active system

In this paper, the optimal value of (Ky4in ) is obtained from the inbuile MATLAB command
"Kgain = 1qr (Ass, Bgs, Q, R)". The values of the Q and R matrices are chosen iteratively until
the desired results are obtained for the specified suspension parameters. The continuous-time,
Lqr problem and the associated Riccati equation are solved by the MATLAB command. The
previous command calculates the optimal feedback gain matrix "Kyq, " such that the feedback

control law and constraint equation (24) are satisfied as follows.
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[P, S, Kgain] = 1qr (Ass, Bgs, Q R)
Where: -
P = Positive definite symmetric matrix
S = Poles of the system
Kyqin = Optimal control gain
Q= diagonal one matrix.
6.TheSuitable Rayleigh Damping Coefficients for a Specific System

The Rayleigh damping model is an approximation to viscous damping. It allows modeling the
energy dissipation in the material due to internal friction, assuming it is proportional to the
strain or deformation rate. There are several general purposes available that have the provision of
providing the value of o and P for calculation of the Rayleigh damping matrix for dynamic
analysis of systems with multi-degrees of freedom. These systems are not undamped but possess
some kind of energy dissipation mechanism or damping. The proportional damping model
Csys expresses the damping matrix as a linear combination of the mass and stiffness matrices, that

is, acts as the following equation:
CSyS = aMSyS + BKSyS (29)

Where(a&f) is the proportional damping constants that have suitable value for our case is
0.0687 and 2.89¢-4 respectively. Where a is stiffness-proportional damping
coefficient [sec.] and f is mass-proportional damping [1/sec.].Based on the present technology it
is very simple to develop a spreadsheet and arrive at a rational value of o and . When testing the
value of two values of o and B as appeared in figures (6-7).Noticed the value variation of alpha

acted strongly in the system while the beta value variation acted weakly in the system.

0.04

passive1 alpha1=0.0687 beta constant
0.03} — =— passive2 alpha2=0.7376 at two cases| |

0.02 b

0.01 n

-0.01

ver.dis.of system. (m)
o

-0.02r

-0.03F b

-0.04

time (sec.)

Figure (6) comparative between alpha (1) and alpha (2) for vertical displacement/time

relation (Constant beta value)
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0.04

passive1 beta1=2.89e-4 alpha constant
— — passive2 beta2=0.23462e-6 at two cases| |

0.03

0.02

0.01

(o]

-0.01

ver.dis.of system. (m)

-0.02

-0.03

_0.04 \ , . \ \
o 5 10 15 20 25 30
time (sec.)

Figure (7) comparative between beta (1) and beta (2) for vertical displacement/time

relation (Constantalpha value)
7. Half car model properties

The half-car model properties used for the simulation are shown in Table (1) [12]. The model
properties may differ if the vehicle is changed.

Table 1: List of 4 DOF half-car model properties [12]

Front-wheel stiffness 134000 N/m
Rear wheel stiffness 134000 N/m
Front unsprung mass (wheel, axle) 62.2 kg

Rear unsprung mass (wheel, axle) 60 kg
Sprung mass (chassis) 1200 kg
Front suspension stiffness 28000 N/m
Rear suspension stiffness 21000 N/m
Moment of inertia of sprung mass 2100 Kg-m2

8.Results and Discussion

The state-space equation and the linear quadratic regulator are the basic to transform the system
from passive to active. Figures (8—13) show the results obtained for homogencous boundary
conditions for the system with three elements of chassis. which appears as the elastic passive
system (blue line), rigid passive system (dashed green line), and elastic active system (red line). It
appears that the chassis rigidity affects the behaviors of the system. From the figures, it appears
that the passive system is greater than the active system (red line) three times. Figures (8) and (9)
show the system vertical displacement with time and the system vertical acceleration with time.

Figures (10) and (11) show chassis vertical displacement and acceleration respectively with the
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time. Figures (12) and (13) show chassis angular displacement and angular acceleration with
time. That, the amplitude of displacement and acceleration reduces to a third of the passive value

depending on the active controller of the system.

0.04 T T T T T
elastic passive|
0.03F - = rigid passive
elestic active
0.02r
E
E' 0.01
i)
7]
=
@« 0
S
L0
© _0.01F
[
>
-0.02
-0.03F
_0.04 1 1 1 1 1
0 5 10 15 20 25 30
time (sec.)
Figure (8) System vertical displacement-time relation
400 T T T T T
elastic passive|
300} — = rigid passive -
elestic active
— 200
N
E
g 100
[
@
@ ok
S
S
& -100
)
>
-200
-300
_400 1 1 1 1 1
(0} 5 10 15 20 25 30

time (sec.)

Figure (9) system vertical acceleration-time relation
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0.08 T T T T T
elastic passive
— — rigid passive |
0.06 elastic active
g 0.04
K]
wn
& o0.02
i
S
—
o
K] (o]
=]
g
-0.02
-0.04
-0.06
time (sec.)
Figure (10) chassis vertical displacement-time relation
600 T T T T T
," elastic passive
| ~ 1 / - = rigid passive |
400 1 : 1 1 1 elastic active
N 1 n 1 I a
—_ I« ] ! || 1\ g : 1 \ I
= 200t I . ! v ) ! I
E 1 1 I P oy s \ N ~\ian
2 1 y || ! ‘A A WAL
7 o) I I 7 \a Y M\ M 1
© ] 1 ]
= 1 1 Ay
S 1 LVA Vo 1y ! I \
kS ! ! . ! 1 I |
. -200f [ v 1 I LI 1, 1
S 1 Vo \ 11 \ v ! v
@ \ (] 1 1
] 1] ' ! ‘,,
€ o0} | ! V1 1 b 8
\ v
I v
i
-600 \} e
_800 1 1 1 1 1
(6] 5 10 15 20 25 30

time (sec.)

Figure (11) Chassis vertical acceleration-time relation
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30

-3
8 s 10 T T T T T
elastic passive
6 rigid passive i
elastic active
o 4
D
=
w
-2 2
[72)
©
S
e O
Q
o
R
S -2
=)
&
-4
-6 B
-8 L L L 1 1
(6] 5 10 15 20 25
time (sec.)
Figure (12) Chassis angular displacement-time- relation
80 T T T T T
elastic passive
60| rigid passive u

angl acc. of chassis (deg./%)

elastic active

10

15
time (sec.)

20

25

Figure (13) Chassis angular acceleration-time relation

9.Conclusions

The present paper's objectives are an analysis of the suspension system behavior for a half-vehicle
model which is influenced by road irregularities. From the presented Graphs discussed before.
We can say that the chassis elasticity is acting on the suspension system. So, we must consider
chassis elasticity in vehicle design to reach the real case of vehicles. That gives us more control of

the vehicle, more comfort on the ride, and insurance contact between tires and the road all the

time.
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