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Abstract

Estimating the remaining useful life of rolling element bearings is essential to ensure the reliable
and efficient operation of rotating machinery, as well as reduce maintenance costs and downtime.
In this study, a novel methodology was used to estimate the Remaining Useful Life (RUL) of ball
bearings. Data were collected from two platforms: one for testing ball bearings with artificial
defects, and another called PRONOSTIA for run-to-failure tests. Noise reduction
techniques (Variational Mode Decomposition (VMD), AutoRegression (AR) filtering and
Bandpass filtering) were applied to the data to select manualy the features. Using the second
platform's data, a Minimum Redundancy Maximum Relevance (MR2) method was used to
select automaticaly the features then the extreme Learning Machine (ELM) classification model
was constructed. Furthermore, an ELM regression model was developed using the second
platform's data to estimate the Remaining Useful Life (RUL). The proposed feature selection
method effectively prevents delayed anticipation of failure. The results provide evidence for the

effectiveness of the proposed approach in enhancing the accuracy of rolling element bearing
Remaining Useful Life (RUL) prediction.
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1.Introduction
Rolling element bearings are a critical component in a wide range of rotating machine

applications, providing support and enabling smooth rotation of various components. However,

*Author to whom correspondence should be addressed : rebhi.redha@gmail.com

5705
Tob Regul Sci. ™ 2022 ;8(2): 5705-5732



Mouloud Boumahdi et al.

Remaining Useful Life Prediction of Rolling Element Bearings using Minimum Redundancy
Maximum Relevance and Extreme Learning Machine
rolling element bearings are subject to wear and damage over time, leading to premature failure

and costly downtime. To ensure the reliable and efficient operation of rotating machinery, as
well as reduce maintenance costs and downtime, adopting a constructive maintenance strategy is
a critical task. The process of detection, diagnosis, and prognosis aims to identify possible faults
within a machine or component and assess the type and severity of the detected problems. This
process often uses diverse tools and techniques, including vibration analysis, acoustic monitoring,
and visual inspection, among others.The general methodology for monitoring rotary machines
includes three steps[1]: obtaining data for relevant signals such as vibration and temperature,
processing data to analyze acquired data, and making maintenance decisions to select appropriate
maintenance methods based on machine operating conditions.

Estimating the remaining life (RUL) of rolling element bearings has emerged as a prevalent
concern within the scientific and industrial community. Despite significant advances in RUL
estimation techniques, the accurate prediction of RUL in defective rolling element bearings
remains a challenging and complex problem.In this framework, the common existing
methodologies for predicting the remaining useful life (RUL) of rolling element bearings can be
categorized into two main groups: model-based approaches and data-driven approaches
[2].Model-based approaches rely on fundamental principles derived from physics. Hidden
Markov models [3], Kalman filters[4], Wiener processes [5], and particle filters [6] are common
techniques in model-based approaches.The complexity of the degradation of rolling element
bearings poses a challenge in creating precise physical models. As a result, data-driven approaches
for predicting the remaining useful life (RUL) have become increasingly popular and rapidly
developed. These approaches use event and condition monitoring data combined with machine
learning techniques for accurate RUL prediction. Various approaches were implemented to train
a prediction model and then apply the trained model to estimate the remaining useful life (RUL)
of rolling element bearings, such as support vector machine (SVM) [7, 8],relevance vector
machine (RVM) [9, 10], Artificial neural networks (ANN)[11, 12], and convolutional neural
network (CNN)[13-15]. However, data-driven methods heavily rely on the selection of features.
This selection can be done manually, automatically, or through a combination of manual and
automated procedures. Manual feature selection is advantageous when there is domain-specific
expertise available or when the data is well understood. On the other hand, automated feature
selection uses algorithms. In general, the process of feature selection significantly impacts the
precision of predictions.

This paper proposes a new approach to predict the Remaining Useful Life (RUL) of ball
bearings.

Firstly, data were collected from two platforms. The first platform aimed to test the ball
bearings with artificial defects, while the second platform, PRONOSTIA, focused on testing the
ball bearings through run-to-failure tests.

Secondly, noise reduction techniques named Variational Mode Decomposition (VMD),

AutoRegression (AR) filtering, and Bandpass filtering were applied to the data from the first
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platform. These techniques were used to extract features and examine their effectiveness in defect

detection, isolation, and identification. The relevant features were manually selected from the
obtained data.

Thirdly, the extreme learning machine (ELM) algorithm was applied to the data from the
second platform to construct an ELM classification model. The method of Minimum
Redundancy Maximum Relevance (MRMR or MR2) was used to automatically select features.

Fourthly, the extreme learning machine (ELM) algorithm was again applied to the data from
the second platform, this time to construct an ELM regression model. This model was used to
estimate the Remaining Useful Life (RUL).

Finally, the proposed approach was validated using performance metrics to evaluate its
effectivenessand understanding its limitations.

This paper makes several key contributions.

(i) it includes two types of ball bearing tests: one with artificial defects and the other subjected
to run-to-failure testing, which allowed for a combination of manual and automatic feature
selection. (ii) it uses a data-driven approach along with the MR2-ELM classification method to
assess the impact of noise reduction techniques.

(iii) it uses a data-driven approach with the ELM regression method for predicting the
Remaining Useful Life (RUL).

The remaining sections in this paper is as follows: Section 2 provides a brief introduction to
the datasets used in this study, along with the feature extraction process to validate the proposed
method. Additionally, it provides a brief description of the noise reduction techniques employed.
Section 3 elaborates on the detailed methodology for constructing the MR2-ELM model,
accompanied by illustrations and the presentation of results for discussion. Finally, Section 4

concludes the paper with our overall findings and conclusions.

2. Methodology for Estimating Remaining Useful Life
Rotating machinery undergoes degradation over time due to operational stresses and
dynamic loads. Maintenance is crucial for maintaining reliability throughout its useful life. The
general methodology for monitoring rotating machines involves three steps [1]: data acquisition
to obtain relevant signals like vibration and temperature, data processing for analysis of the
acquired data, and maintenance decision-making to select suitable maintenance methods based
on the machine's operating conditions. This methodology enables proactive monitoring, early
issue detection, and ensuring optimal reliability and performance.
This study presents a methodology for monitoring rolling element bearing deterioration and
estimating Remaining Useful Life (RUL) using an extreme learning machine algorithm (ELM),
as depicted in Figure 1. Prior to implementation, it is important to clarify the tools employed in

this study.
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Figure 1. Flowchart of the proposed methodology
2.1 Overview of noise reduction techniques in vibration signals

Accurate diagnosis of fault bearings is crucial for ensuring the reliability and safety of
machinery. Vibration signals are commonly used for this purpose but are often contaminated
with noise, which can obscure critical fault signatures. Moreover, stochastic noise often obscures
impulsive signatures in complex and non-stationary vibration signals (e.g., in ball bearings,
vibrations, and noise in the form of periodic impulses produced when the balls pass over a defect
in the rings).

To achieve these objectives, using advanced techniques such as AutoRegression (AR) filtering,
Variational Mode Decomposition (VMD), and Bandpass filtering is of utmost importance in
implementing effective condition monitoring and maintenance strategies. These techniques can
be used individually or in combination to remove noise from vibration signals and preserve
important features of the signal. In the following sections, we present an overview of the
techniques used in this study.

AutoRegression (AR)

The AR model is widely used for denoising signals as it has the ability to capture the
underlying dynamics of the signal and isolate it from the noise component. Let us considére a
time series X(n);n=1,...,N, which is the measured vibration signal. The actual current value can be
expressed as the sum of the predicted value and a noise term, as shown in equation 1:

x(n) = x, () +e(n) (1)
X, (n) = —Zp:a(k)x(n -k) ()
k=1
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where x_(n)is the predicted current value obtained through a weighted sum of the p previous

value, a(k)are the AR coefficientscan be calcultaed using the Yule—Walker equations [18, 19],
and the residual error is denoted ase(7).

The AR filter as described by Eq. (2), well predicts the deterministic pattern of the signal but
is not capable of adapting to the sudden impulses caused by a localized fault. The benefits of
using an AR model arise from its simplicity, efficiency and the low prior requirements for its
application.

Although the AR filter as described by Eq. (2), is proficient in predicting the deterministic
pattern of the signal, it may not effectively adapt to sudden impulses caused by localized faults.
However, the advantages of using an AR model stem from its simplicity, efficiency, and minimal
prerequisites for application [20].

Variational Mode Decomposition (VMD)

Variational mode decomposition (VMD), like Empirical Modes Decomposition (EMD), is
one of the most recent signal decomposition techniques used to reduce noise. Dragomiretskiy
and Zosso proposed variational mode decomposition in 2013 as a new self-adaptive signal
decomposing method[21].Since its proposal, VMD has found applications in various fields.

VMD method allows to decompose the original signal into a finite number of signals so-called
Intrinsic Mode Functions (IMFs) which is defined as follows.

Xy =1 Uy (1) +res(t) 3)
Where X, is the original signal, {u,}={uy,u,,...,u,}are decomposition signals, and resis

the residual signal after optimization.

The decomposition procedure involves resolving the following optimization problem:

{ufﬁi{ﬂk}{; 0, Ha(t)+nitjuk(t)}e—jwkt 2} @

subject to > u, =X,
K
Where X, is the original signal, {u}is the IMFs set, {o}is the center frequencies of each{uk} ,

8 (t)is an impulse function, and # is a modal component number.

To minimize equation4, the augmented Lagrangian function is addressed by introducing both

a quadratic penalty termand Lagrangian multipliers A:

L({ue} {o}2)= DI |:£8(t)+nl'[juk(t):|e—jwkt

2

2

2

+ (1), %, (1) =D u (1)
2 k 5)

where a is quadratic penalty factor and A is Lagrange multiplier.

+xa ()= 2 U (1)

k
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The solution is achieved by optimizing the center frequency and bandwidth of each IMF. The

updating procedures of frequency U, can be expressed as [22]:

Xo (0) 2, 0 (©) =2,

u
1+ 2(1(0)—0)[2 )2

GE“(@)(—
Where it (o), X, (@), and X(co) represented the Fourier transformations of ", x (t)> and
A(t)-

© Fk 2d
opt =M (7)
.[o |0k(0))| do

The VMD process is terminated when the relative error e is less than a convergence tolerance

2

2 (g 8)

AN+l An
Zk U™ —Uk
2

—n

Uy

Bandpass filtering

Bandpass filters are widely used in vibration signal analysis for diagnosis and prognosis
purposes. They effectively filter out high and low-frequency noise from the signal by allowing
only frequencies within a specific range to pass through while attenuating frequencies outside
that range. A bandpass filter can be applied to the vibration signal by selecting two cutoff
frequencies to isolate the frequency band associated with a rotating component fault. All
frequencies below the low-frequency cutoff and above the high-frequency cutoff are removed in
the filtered signal, resulting in a focused frequency band associated with the fault.

When a fault occurs in a rotating component of a machine, such as a bearing, it can
significantly impact the rotating machine’s natural frequencies. The FFT (Fast Fourier
Transform) spectrum is a helpful tool for identifying the cutoff frequencies within the significant
resonance range.
2.2Feature selection with MR2

Minimum redundancy maximum relevance (MRMR or MR2) is a feature selection method
that combines filter and wrapper approaches to select a subset of features that are both highly
relevant to the target variable and minimally redundant with each other.This method was
proposed by Peng et al. [23] and has been widely used in machine learning applications.

The determination of redundancy and relevance is based on mutual information, which can

be is expressed as:

1(X¥)=X,, p(xﬂy;)'og;x(j‘—;,y("y)_) @

Where X and Y are feature vector (features that describe each instance) or class vector (class label
of each instance), p(x; ) is the probability that X takes the value x; and Y takes the value

simultaneously, and, and p(x;) and p(y) are the marginal probabilities of X and Y respectively.
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Assume that Srepresents the subset of features being evaluated(Se X ), |S|is the number of

features, and Yis theclass variable.
The relevance of a feature set S is defined as the mutual information between S and Y, which

can be expressed as:
1
RL(S):EZH 1(x.Y) (10)

The redundancy of a feature set S with respect to the target variable Y'is defined as the average

mutual information between the features in S, which can be expressed as:
RD(S):éziyjl(xi,xj) (11)

Wherex; and x; are two distinct features in S, and /(x; x;) is the mutual information between

features x; and x;

The MRMR algorithm aims to identify the optimal feature set S that maximizes the relevance
RL and minimizes the redundancy RD. To evaluate the relevance of features in S, the Mutual
Information Quotient (MIQ) is commonly used. The process involves selecting the feature with
the largest MIQ value in S and adding the selected feature to the set S. the maximum of MIQ is
expressed as:

max MIQ(S):M (12)
@Z 1 (x.Y)
2.3 Overview of ELM

Extreme learning machine (ELM) has acquired significant attention due to its simplicity, fast
training speed, and excellent generalization performance, making it widely used in various
applications [24]. ELM algorithm is proposed by Huang et al. [25]for training single hidden
layer feedforward neural networks (SLENs). In the current section, a brief overview of ELM is
presented.

Given a set of NV training samples (x;,t;);i = 1,2,..., N, where x; represents the input
features and ¢; represents the corresponding target outputs, the output of an ELM with Z hidden
node is expressed as:

yj = Xk Bigi (x;) = Tk Big (wixj+by),j = 1,2, ..., N (13)
wherel is the number of hidden neurons,X;is the vector representation of the jth input sample,
and g;(x;) is the activation function of the ith hidden neuron,f; is theoutpur layer weight of the
ith hidden neuron, w; is a vector containing the input layer weights,and biis the bias of the ith
hidden neuron.

The Eq. (6) can be written as follows:
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HB =T.(14)
gwixy+by) ... g(wrxi+by)
whereH = ' ' ;T = [tg, by, o, ty]T58 =
gwixy+by) ... gwixy+b )iy,

[B1, Bz, .., BT (15)

H is the hidden layer output matrix, 7" is the target outputs vector of the training samples, andfis
the output weights that can be calculated analytically by obtaining the following least square
solution:

B =H'T(16)
where HTis the Moore—Penrose generalized inverse of matrixH.
2.4 Data set and feature extraction

This study used data collected from two distinct platforms to detect, diagnose, and predict the
remaining useful life of rolling element bearings. The first platform is designed specifically for
detecting and diagnosing defects in rolling bearings by conducting tests on new bearings or those
with artificial defects. The second platform is intended for monitoring the deterioration of
rolling bearings throughout their entire operating life, with the aim of predicting the remaining
useful life of the ball bearings. These two platforms provide distinct data for assessing the
condition of rolling bearings.

Time domain features

During operation, rotating machines generate vibrations, and the elevated level of these
vibrations is often indicative of the deteriorating condition of their components. To track the
health status of these components, statistical indicators, commonly referred to as features, are
used.

In this study, a total of fifteen statistical features were extracted from each vibration signal,
which included RMS, Peak, Kurtosis, CF, KF, Rang, mean, STD, VAR, ADEV, Skewness,
Margin, RA, IF, and shape. Table 1 provides a mathematical description of these features. The
Range (or peak-to-peak), mean, peak, RA, and RMS indicators reflects the vibration amplitude
and provides a measure of the overall vibration energy present in the time signal. In contrast,
kurtosis, skewness, variance crest factor, shape, std, KF, IF, and margin provide information on
other aspects of the vibration signal, such as its distribution, shape, and extreme values, but they
do not directly reflect the vibration amplitude and energy in the time domain as the RMS value
does. Through time-based analysis of these features, potential failures can be predicted and
prevented, resulting in reduced unplanned downtime and minimized maintenance costs.

Table 1. Mathematical description of features.

Features Mathematical description

Range Range = max(x;) —min(x;)
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N
Mean Mean = %

Peak Peak = max ;|

N 2
Root amplitude (RA) RA = [ Zi=|1\| \/MJ

Root mean square (RMS) - 2:11 Xi2
N Mean
Average deviation (ADEV) ADEV = Zi:l'xi — |
N 2
Variation (VAR) VAR — > (% —Mean)
N
N Mean ¥
Standard deviation (STD) STD = Zizl(xi —Mean)
N-1
N 3
. (x —Mean
Skewness Skewness = Zl:l( i )
(N-1).sTD?
N 4
(X —Mean
Kurtosis Kurtosis = lel( i )
(N-1).sTD*
Crest Factor (CF) CF = Peak
RMS
K Factor (KF) KF = Peak.RMS
. Peak
Margi Margin= ——
argin 9 s
RMS
Shape =
Shape P Margin
Impulse Factor (IF) _ _Peak
mpulse Factor Margin

Detection and diagnosis of defects

A series of experiments were conducted on the dedicated platform[16] to accurately detect
and diagnose defects in rolling bearings.Figure 2 shows a deteriorated rolling element bearing
with two artificial elliptical spalls that appear on both the inner race and outer race of a rolling
element bearing. The reason for giving an elliptical shape to artificial defects is that defects
frequently have an elliptic shape in real-life scenarios. Hence, adopting an elliptical shape for

artificial defects can help simulate realistic conditions for experimental testing purposes.
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Figure 2. Ball bearing with artificial spalls.

Specifically, SKF6206 single-row ball bearings were mounted and tested on a rolling bearing
fault detection test rig. Defects of varying sizes, ranging from 8 mm2 to 20 mm2, were
introduced through electroerosion on the inner, outer, or both races simultaneously. The
experiments were conducted at a rotational speed of 1000 rpm and with a horizontal radial load
of 5000 N generated by a hydraulic cylinder. In addition, acceleration measurements have been
performed over a broadband frequency range of 20 kHz. Table 2 summarizes the relevant details
of the experiments.

Table 2. Ball bearing characteristics and test details.

Ball bearing characteristics Operating conditions
TypeSKF 6206 Sampling frequency 51.2 kHz
Number of balls 9 Rotational speed 1000 rpm
Pitch diameter 46.00mm Radjial loads 5000 N
Diameter of a ball ~ 9.53 mm

Figure 3 shows signals obtained by an accelerometer that was mounted on a bearing in a
horizontal radial direction and measured under identical rotational speeds and loads. These
signals show periodic pulses that are typical of rolling defects that arise when a ball passes over a
surface discontinuity on race. The distinctive nature of these signal patterns is characteristic of

rolling defects and provides a reliable indicator of potential issues.
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Figure 3. Vibration signals associated with defects in the inner race, outer race, or both
races simultaneously.
Prognosis for remaining useful life prediction

A series of experiments were carried out on the PRONOSTIA platform designated [17]to
accurately estimate the remaining useful life. The platform’s objective is to provide accurate
empirical data to monitor and describe the degradation of ball bearings throughout their entire
operational lifespan. In addition, run-to-failure experiments were conducted in which radial
loads exceeding the permitted limits were applied to the ball bearings to accelerate their
degradation.

The PRONOTIA platform was used to conduct tests on NSK 6804DD deep groove ball
bearings, which are designed to operate at a maximum speed of 13,000 rpm. The experiments
were conducted at a rotational speed of 1800 rpm, with a horizontal radial load of 4000 N
generated by a hydraulic cylinder. The pertinent details of the experiments are summarized in
Table 3.

Table 3. Ball bearing characteristics and test details.

Ball bearing characteristics Operating conditions
TypeNSK 6804DD Sampling frequency 25.6kHz
Number of balls 13 Rotational speed 1800 rpm
Pitch diameter 25.6mm Radial loads 4000 N
Diameter of aball 3.5 mm

Two high-frequency accelerometers were installed on the bearing housing to collect
monitoring data during testing. One accelerometer was positioned horizontally, while the other

was placed vertically. Acceleration measurements were taken at a sampling frequency of 25.6
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kHz, and vibration data were recorded at 1-second intervals. The objective of the experiment was
to gather high-quality data that could be used for predicting potential defects in the bearings.
Figure 4 displays the temporal changes of the RMS feature for four rolling bearings: Bearing
1_1(B1_1), Bearing1 2 (B 1_2), Bearing 1_3 (B 1_3), and Bearing 1_4 (B 1_4). Although the
rolling elementbearings are of the same type and were tested under the same operating conditions
listed in Table 3.We observe that the progression of deterioration for each rolling bearing differs
from one another. This finding indicates the complexity of analyzing the deterioration condition
of rolling elementbearings and confirms the need for appropriate tools and techniques to assess

rolling bearings conditions effectively.

12
Actual data B 1-1
Smoothed data B 1-1 B1-3
10 - Actual data B 1-2 Y .
Smoothed data B 1-2 B 1-4
Actual data B 1-3
8 Smoothed data B 1-3 _
Actual data B 1-4 B 11
. Smoothed data B 1-4 \
(=]
m - -
Q2 6
o
4 - -
B 1-2
| - _— 7 '_“M |
sn i -
0 . N | | . . . .
-1 0 1 2 3 4 5 6 7 8

Time (hour)

Figure 4. RMS evolution over time for four bearings: B1_1,B1_2,B1_3,and B 1_4.

3.Results and Discussion

This study focuses on two interrelated processes: the detection and diagnosis of defects and
the prognosis of the remaining useful life of rolling element bearings. The first process involves
analyzing the impact of noise reduction techniques on identifying the condition of bearings, both
with or without defects, as well as assessing the validity of proposed parameters. The second
process entails using the MR2-ELM algorithm to predict the remaining useful life of the
bearings.
Detection and diagnosis of defects

This section aims to investigate how defect types and noise reduction techniques affect the
integrity of signals generated by rolling element bearings. By analyzing the effects of various types
of defects and noise reduction methods, we can gain a better understanding of accurate defect
detection and diagnosis.

Figure 5 illustrates the impact of noise reduction techniques on feature values for different
types of defects. Specifically, we consider four distinct types: rolling element bearings without

defects (WD), rolling element bearings with inner race defects (IRD), rolling element bearings
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with outer race defects (ORD), and rolling element bearings with both inner and outer race

defects (OIRD). In addition, we evaluate three noise reduction techniques: VMD, AR, and
BandPass.

The figure displays fifteen bar graphs, each representing the features listed in Table 1. After
examining the bar graphs depicting the values for RMS, Peak, RA, Range, std, adev, KF, VAR,
margin, CF, and kurtosis, we noticed that bearings afflicted with IRD, ORD, and OIRD defects
displayed higher levels of vibration amplitude than those lacking any defects. Additionally, we
found that inner race defects led to higher vibrations than outer race defects. However, the bar
graphs representing the features for skewness, mean, IF, and shape do not provide clear insights
into detecting and diagnosing rolling bearing defects. Therefore, we have excluded these features
to maintain accuracy in our analysis.

In the next section, we will explore the potential of the remaining eleven features.
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Figure 5. The effectiveness of noise reduction techniques on feature values across different defect
types.

Figure 6shows the signals recorded by an accelerometer fixed on the bearing in a horizontal
radial direction, with identical rotating speed and loading conditions. These signals exhibit
periodic pulses that indicate bearing defects caused by a ball passing over a discontinuity in the
bearing raceway. The figure also shows that the noise reduction methods, VMD, AR, and
BandPass, did not affect the integrity of the vibration signals. The FFT and envelope spectrum
were generated by processing the vibration signals, which reveal peaks corresponding to the
characteristic frequencies of bearing defects. Tonote in particular, the envelope spectrum
provides a more precise identification of the frequency characteristics of defects compared to the

FFT spectrum.
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Figure 6. The vibration signals generated by a defect in the outer race of a bearing, its FFT
spectrum, and its envelope spectrum.
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Figure 7 illustrates the temporal progression of feature values (refer to Table 1) over time. It is

evident that certain curves exhibit a notable trend, indicating the deterioration of rolling element
bearings, while others do not show a significant trend. In Figure 8, the FFT and envelope
spectrum of the latest vibration signal recorded from Bearingl 1 are presented. The impact of
rolling element bearing deterioration on the natural frequency of the platform can be observed in
the frequency range of 500 to 1500 Hz. Furthermore, Figure 8 demonstrates that the envelope
spectrum offers a more precise identification of the frequency characteristics of defects in
comparison to the FFT spectrum.Figure 9 illustrates the impact of noise reduction techniques on
RMS feature for Bearingl_1.
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Figure 7. Temporal feature trends for Bearing 1_1.
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Figure 9. The impact of noise reduction techniques on RMS feature for Bearingl 1.

Selection features using MR2

The Minimum Redundancy Maximum Relevance (MR2) algorithm is a powerful feature
selection tool that can help improve the accuracy and efficiency of machine learning models. The
application of MR2 algorithm involves the following main steps: firstly, instances are extracted
from vibration signals to build the dataset. Each instance is defined by fifteen statistical features

(as listed in Table 1), and the data is divided into three classes based on two alarm thresholds,
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alert and danger thresholds. These classes are referred to as Normal, Abnormal, and

Danger.Secondly, the MR2 algorithm is used to conduct correlation-based feature selection,
where the features are ranked based on their relevance to the classes. Thirdly, a specific number
of top-ranked features are selected. Fourthly, an extreme machine learning model is trained using
the selected features. Lastly, the model's performance is evaluated using a suitable metric, such as
classification rate or Kappa statistic.

This study examined various features to evaluate their performance and identify the optimal
number of features. The results in Table 4 highlight the key features selected by manual and
automatic selection for the accurate classification of ball bearing condition classes. Figures 5 and
7illustrate the close relationship between the RMS and STD features. Additionally, the feature
STD is highly correlated with the high-ranked feature RMS. Including STD in the model may
lead to overfitting or a reduction in interpretability. Consequently, to prevent overfitting, we
removed this feature from the model.

So far, we have excluded five of the fifteen features in Table 1. The rest of this study will focus

on the remaining ten features, shaping the foundation for our analysis.

ELM classification model

To establish the Extreme Learning Machine (ELM) classification model involves determining
the dataset and the appropriate values for key parameters: the optimal number of hidden neurons
and the activation function.The optimal number of hidden neurons, determined through Grid
Cross Validation (GridCV) algorithm, and the sigmoid activation function were used in this
study. Multiple ELM classification models were constructed using four datasets. One dataset was
used without any noise reduction, while the other three datasets corresponded to three noise
reduction techniques: VMD, AR, and BandPass. According to the number of features used in the
classification, each dataset is divided into six sub-datasets. as follow: The first sub-dataset
comprised all features, the secondsub-dataset comprised ten manually selected features, while the
remaining foursub-datasets consisted of features selected and ranked based on their relevance
using the MR2 algorithm (See Table 4).
Performance ofclassification models

In this section, we present a summary discussion of the results obtained through the
application of the ELM classification algorithm on the various datasets. The obtained models can
be classified into two categories. The first category comprises models established using denoised
signals, while the second category includes models established using original signals. A
comparison between the performance of the two categories (See Table 4) reveals that the models
in the first category demonstrate superior performance compared to the second category. The
presence of well-established features used for the identification of bearing faults, namely root
mean square (rms), kurtosis, and crest factor, is evident within the chosen set of features. The
effectiveness of these renowned features has been substantiated through extensive references[26].

Evaluation metrics, including classification rate, Kappa statistic, MAE, and RMSE, consistently
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favor the models in the first category, highlighting their better predictive accuracy. The results

presented in Table 4 showcase a classification rate range of 93.94%-97.72% and kappa statistics
ranging from 0.88 to 0.94, indicating a strong correlation. Furthermore, the mean absolute error
falls within the range of 0.003 to 0.006. These findings emphasize the importance of dataset
selection and further validate the effectiveness of the models in the first category for the given
task. In the confusion matrix (Tables 5-8), the diagonal elements represent the instances that
were correctly classified for datasets which correspond to: actual signals, signals denoised with
VMD, signals denoised with AR, and signals denoised with BandPas filter, respectively.
Conversely, the remaining elements in the matrix indicate the number of instances from each

class that were incorrectly classified.

Table 4.Performance of ELM classification models

without Manual Number of selected features using MR2 algorithm
Data selecting featu.re
- features selection 5 4 3 2
(15 features) | (10 features)
ONHN: 18 ONHN: 20 ONHN: 12 ONHN: 16 | ONHN: 19 ONHN: 18
CR:93.94% | CR:96.68% | CR:95.68% | CR:96.36% | CR:96.21% | CR:96.18%
KS: 0.88 KS: 0.93 KS: 0.91 KS: 0.93 KS: 0.92 KS: 0.92
MAE: 0.06 MAE: 0.03 MAE: 0.04 MAE: 0.04 MAE: 0.04 MAE: 0.04
RMSE: 0.27 | RMSE: 0.19 | RMSE: 0.22 | RMSE: 0.20 | RMSE: 0.20 | RMSE: 0.20
Rms Rms Rms Rms Rms
Actual Cf of cf cf cf
- kurtosis kurtosis kurtosis kurtosis
range range range
ra ra
peak
kf
adev
marg
var
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ONHN: 19 ONHN:17 ONHN: 20 ONHN: 20
CR:97.72% | CR: 95.43% SSI;H:G;;) SEI;SN‘l r, | CR:96.15% | CR: 95.40%
KS: 0.89 KS: 0.91 KS'IO 9'1 KS'.O 96 KS:0.92 KS: 091
MAE: 0.05 MAE: 0.05 MAE 0.04 MAE 0.05 MAE: 0.04 MAE: 0.05
RMSE:0. 24 RMSE: 0.22 RMSE: 022 | RMSE: 0.22 RMSE: 0.20 RMSE: 0.22
Rms Rins Runs Rms Rms
cf o o cf cf
AR kurtosis peak . . kurtosis
i kurtosis peak | kurtosis peak
ra
range
marg
kf
adev
var
ONHN: 13 | ONHN: 14 ONHN: 20 ONHN: 14 ONHN: 20 ONHN 20
CR: 94.04% | CR:95.61% | CR:96.00% CR: 95 '79% CR:95.93% | CR:96.11%
KS: 0.88 KS: 0.91 KS:0.92 KS'.() 9'2 KS: 0.92 KS: 0.92
MAE: 0.06 MAE: 0.04 MAE: 0.04 MAE 0.04 MAE: 0.04 MAE: 0.04
RMSE: 0.27 | RMSE: 0.21 | RMSE: 0.20 RMSE: 0.21 RMSE: 0.20 | RMSE: 0.20
Rms Rms Rms Rms
of of Rms of of
VMD . . cf .
- kurtosis kurtosis ) kurtosis
range range kurtosis
i i range
peak
kf
adev
marg
var
ONHN: 17 | ONHN:20 | ONHN:17 | ONHN:20 | ONHN: 15 ONHN: 19
CR:94.26% | CR:96.32% | CR:96.75% | CR:97.18% | CR:96.25% | CR:96.79%
KS: 0.89 KS: 0.93 KS 0.93 KS: 0.94 KS: 0.92 KS: 0.94
MAE: 0.06 MAE: 0.04 MAE 0.03 MAE: 0.03 MAE: 0.04 MAE: 0.03
RMSE: 0.25 | RMSE: 0.19 | RMSE0.18 RMSE: 0.17 | RMSE: 0.19 RMSE: 0.18
adev adev adev adev adev
BandPass cf cf cf cf cf
- range range range range
kurtosis kurtosis kurtosis
Rms Rms
peak
ra
kf
marg
var
Note: Number of hidden neuron (ONHN); Classification rate (CR); Kappa statistic (KS); Mean absolute
error (MAE); Root mean square error (RMSE)

Table 5. Confusion matrix correspondent to actual signals for all features.
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Classified as — Normal =~ Abnormal Danger
Normal 1571 39 11
Abnormal 92 1006 41
Danger 0 1 42

Table 6. Confusion matrix correspondent to signals denoised with VMD for all features.

Classifiedas — Normal Abnormal Danger
Normal 1574 45 2
Abnormal 91 1010 38
Danger 0 1 42

Table 7. Confusion matrix correspondent to signals denoised with AR for all features.

Classifiedas — Normal Abnormal Danger
Normal 1590 29 2
Abnormal 88 1040 11
Danger 0 7 36

Table 8. Confusion matrix correspondent to signals denoised with BandPass for all features.

Classifiedas — Normal ~ Abnormal Danger
Normal 1543 71 7
Abnormal 61 1044 34
Danger 0 6 37

Figures 10-11, show a comparison of the accuracy and the MAE results of four different ELM
algorithms. The horizontal axis represents the different datasets tested (Actual, AR, VMD,
BandPass) to construct the ELM models.In term of accuracy,Figure 10shows that the fourth
method (denoised signals using BandPass) has the highest median value of a set of accuracy
numbers (96.535), followed closely by the first method (actual vibration signals) with a median
value of 96.20. The third method (denoised signals using VMD) has a median value of 95.86,
and the second method (denoised signals using AR) has the lowest median value of 95.55.In
term of mean absolute error (MAE), Figure 11shows that the fourth method has the lowest
median value of a set of MAE (0.035), followed by the first and third methods with median
values of 0.04 and 0.04, respectively. The second method has a slightly higher median value of
0.05. However, the variation in accuracy and mean absolute error (MAE) among the four
methods is insignificant. Hence, it is recommended to consider additional factors outside of these

criteria to support the selection of the most appropriate features.
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Figure 10. Comparison of Accuracy for four ELM classification models.
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Figure 11. Comparison of MAE for four ELM classification models.
ELM regressionmodel to estimate RUL

This section focuses on estimating the Remaining Useful Life (RUL) using the Extreme
Learning Machine (ELM) algorithm. The ELM is applied to construct regression models using
the previously mentioned datasets (See Table 4). To evaluate model performance and identify the
optimal configuration Cross-validation is employed. Figure 12 summarizes the results obtained
from the application of the ELM algorithm, offering valuable insights into the accuracy of RUL
estimation and the effectiveness of the ELM approach.

From Figure 12a, it is evident that the RUL in the upper region of the curve is lower than the
actual RUL, indicating early anticipation of failure. Conversely, the RUL in the lower region of
the curve is higher than the actual RUL, indicating delayed anticipation of failure. In Figures
12b-12f, the RUL in the lower region closely aligns with the actual RUL. This change can be
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attributed to the use of selected features only. The occurrence of disparities between predicted

RUL and actual RUL has been documented in numerous scholarly investigations[8].
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Figure 12. RUL over time obtained from ELM models and actual signals.

Figure 13highlights the varying degrees of performances between the ELM models obtained
from different datasets (Actual signals, AR, VMD, BandPass). This analysis reveals that the first
method (which is based on actual vibration signals) exhibits the highest median coefficient of
determination (R2) value of 98.34, indicating superior predictive performance. The fourth
method (which is based on denoised signals using BandPass filter) follows closely with a median
value of 97.68, showing good performance. The third method (which is based on denoised

signals using VMD) also performs well, with a median value of 97.14. In contrast, the second
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method (which is based on denoised signals using AR) has the lowest median value of 96.38,

suggesting relatively weaker predictive ability.
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Figure 13. Comparison of coefficients of determination for four ELM regression models.
4.Conclusion

This paper presents a novel methodology for estimating the Remaining Useful Life (RUL) of
rolling element bearings. The proposed method uses a data-driven approach and machine
learning techniques, specifically MR2 and ELM, to accurately estimate the RUL of degraded
rolling element bearings. By combining manual and automatic feature selection methods, the
proposed approach effectively avoids delayed anticipation of failure. Additionally, the impact of
noise reduction techniques on feature selection is highlighted. The successful application of this
methodology in condition monitoring of rotating machines holds significant promise for
intelligent decision-making, leading to enhanced efficiency and cost-effectiveness.

While this study showcases notable advancements in RUL estimation, it is important to
acknowledge the need for further research to explore the performance of the proposed
methodology across different machine-learning techniques. Future work should focus on
extending and refining the methodology to incorporate various noise reduction techniques. In
conclusion, the novel methodology proposed in this study provides a practical solution for
predicting the RUL of defective ball bearings, contributing to the field of condition monitoring

and maintenance optimization.
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