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Abstract

Continuum mechanics hinges on the concept of a Representative Volume Element (RVE) playing
the role of a mathematical point of a continuum field approximating the true material
microstructure. The RVE is very clearly defined in two situations only: (i) unit cell in a periodic
microstructure, and (ii) volume containing a very large (mathematically infinite) set of microscale
elements (e.g. grains), possessing statistically homogeneous and ergodic properties. The RVE or
unit cell approach currently gains more and more importance in the numerical determination of
generalized material behavior of multiphase materials, which are of sufficient length to capture all
the average details of the microstructure.

One important goal of the mechanics and physics of heterogeneous materials is to derive their
effective properties from the knowledge of the constitutive laws and spatial distribution of their
components. Homogenization methods have been designed for this purpose. The basic idea
behind RVEs is that the elastic energy stored inside a unit cell is identical to the one stored inside
the represented homogenized continuum.

This paper deals with a multiscale approach to model heterogeneous materials, and using failure
criteria, Tsai-Hill and maximum deformation, to detect any failure of the matrix and fiber,
respectively. In the macroscale (global scale), the Boundary Element Method (BEM) for anisotropic
plane elasticity was used to evaluate strain and stress fields in the domain of the lamina. These
fields represent the macroscopic tensor of the structure, which is used to evaluate the boundary
conditions in the microscale (local scale). Computer implementation of BEM and multi-scale
approaches, to perform defect analyzes on composite laminates; Discussion of the results
obtained from the multi-scale analysis and the failure are compared with the results obtained by
other analyzes.
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Introduction

With the identification of damage mechanisms at different length scales, experimental
approaches have been developed to detect and monitor their occurrence, evolution and
interaction. The revealed relations have been covered by appropriate mathematical descriptions
and the associated parameters have been determined for various material systems like wood, short
and long fiber reinforced polymer composites or steel reinforced concrete. The resulting theories
span from statistical descriptions of the successive fiber fracture (fiber bundle models), over the
description of stress concentration fields around successively failing fibers up to macroscopic
post-failure degradation models. The sub-project Numerical simulation of damage evolution
included the implementation of the generated knowledge into application-oriented engineering
tools.

Numerous studies have been carried out on the homogenization method and the mechanical
behavior of corrugated structures for general applications.

Going from structures to materials requires a careful investigation of the effective material
properties resulting from the arrangement of stiff inclusions in a compliant matrix with the
overall composite undergoing finite strains, which is the main focus of this contribution. The
extraction of effective properties encourages the use of homogenization techniques to determine
the full elasticity tensor, which is generally anisotropic.

We will consider composite materials in which microstructural characteristics (such as inclusion
size) are orders of magnitude smaller than the body’s macroscopic extensions, so that we may
assume a separation of scales as in the classical theory of composites [1]. Consequently, the
composite can be treated as a homogeneous solid with an effective response to be determined
from a microstructural representative unit cell. [2] One-way out is what is commonly known as
multi-scale modeling, where macroscopic and microscopic models are coupled to take advantage
of the efficiency of macroscopic models and the accuracy of microscopic models. The goal of this
multiscale modeling is to design combined macroscopic-microscopic computation methods that
are more efficient than solving the complete microscopic model and at the same time to provide
the information we need at the desired precision [3 — 8].

In homogeneous materials such as a fiber reinforced composite material, granular media or
biomaterials generally possess a complex micro structure. In accuracies or stochastic variation
(uncertainty) of a material property, geometry or topology sometimes arises in the
microstructure. This in accuracy will have influence on a homogenized material property,
macroscopic or microscopic mechanical response of a structure. In general, stochastic

characteristics such as expectation or variance of a homogenized property of composites will be
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unknown even if those stochastic characteristics of a mechanical property of each component
material are known.

In order to improve reliability of a composite structure, therefore, the influence of the inaccuracy
in a microstructure on a homogenized mechanical property should be investigated.

The prediction of the mechanical properties of the composites has been an active research area
for several decades. Except for the experimental studies, either micro- or macro mechanical
methods are used to obtain the overall properties of composites.

Micromechanical method provides overall behavior of the composites from known properties of
their constituents (fiber and matrix) through an analysis of a periodic representative volume
element (RVE) or a unit-cell model [9, 10].

In the macro mechanical approach, on the other hand, the heterogeneous structure of the
composite is replaced by a homogeneous medium with anisotropic properties. The advantage of
the micromechanical approach is not only the global properties of the composites but also
various mechanisms such as damage initiation and propagation, can be studied through the
analysis [11, 12].

In the micromechanics of the continuum, each material point is considered as a finite volume of
a homogeneous material that has macroscopically zero structural dimensions but represents a
finite microscopic size with a certain microstructure. For a non-periodic microstructure, the RVE
isdefined as a volume containing a very large number of elements at the microscopic scale. This
definition is valid only in the case of an ergodic material, that is, the ergodic hypothesis implies
that the heterogeneous material is supposed to be statistically homogeneous. This fact also
implies that sufficiently large volume elements selected at random positions in the sample of the
material considered have statistically equivalent component arrangements and contain the same
averaged material properties. Such material properties are referred to as the effective material
properties of the inhomogeneous material. Therefore, the volume in the homogenization /
localization procedure must be chosen to be an appropriate RVE, with the size sufficient to
contain all the information needed to describe the behavior of the composite. Thus, such a
choice largely determines the accuracy of the model of a heterogeneous material [4].

The aim is therefore to define the range of the possible effective behavior in terms of limits,
which depend on certain parameters characterizing the microstructure, such as, for example, the
volume ratio of the inclusions in a matrix. To this end, many homogenization methods have
been developed. We mention the pioneering studies of Voigt [13] and Reuss [14], which
formulated rigorous limits for the effective moduli of the prescribed volume fraction composites.
A few decades later, Hashin and Shtrikman [15 — 16] presented an extension of the method
based on variational formulations. If the microstructure is composed of a matrix and spherical or
spheroidal inclusions, the effective behavior of the composite can be obtained using the self-
coherence method [17 — 21].
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This work aims to develop a numerical failure analysis in unidirectional laminates, based on
multiscale modeling of heterogeneous materials, and using failure criteria, Tsai-Hill and

maximum deformation, to detect any failure of the matrix and fiber, respectively.

1. Failure criteria

The concept of failure in laminated materials can be classified into three levels: lamina failure
criterion, the laminate failure criteria, and the criteria for structural failure. The study of a failure
criterion of a lamina defines the possible states of stresses in which the failure occurs.

When evaluating the failure of the laminate, it is questioned if this occurs when only one of the
laminae fails or when all fail. In the latter case, the numerical analysis must consider the
progressive failure of the laminas, being necessary to use theories of damaging the lamina.

The last level of failure criterion is structural. The focus of this criterion is the fulfillment of the

objective of the structural part in a project; it defines a permissible damage criterion in designed
part [22 — 24].

2. Basic relations for anisotropic elasticity
Using the notation reduced tensor proposed by Lekhnitskii [25], the equation for anisotropic

elasticity may be written as

ayp* — 2a160° + (2ag; + age)U* — 2az64 + azp = 0 (1)
Where a;jis the material compliance matrix given by [25]:
a11=i» a12=_E=_12
E; E; E,
a16:%:n;i, azzin, azeznzﬁ:n;i' 6166:(;i )
1 12 2 2 12 12

Where Ejare Young’s moduli referring to axes xk, Gy, is the shear modulus for the plane,v;jare
Poisson’s ratios and 1y jand 1, jare mutual coefficients of the first and second kind, respectively,

and p the roots of the equation, always complex or pure imaginary, occurring in pairs (nk and pik)

as shown by Lekhnitskii [26].

3. Boundary integral equation for anisotropic materials
The integral equation, which relates the fundamental state with any other state in a body with
domain Q and boundary I', can be written for an interior domain point as (see for example
Reference [27 - 28]):
w; + [ Tyewedl = [ Uy tyedl 3)
whereu; is the displacement vector, tj, is the traction vector, Uy, and Ty, are the displacement
and traction anisotropic fundamental solutions for elastostatics, respectively.
The anisotropic displacement fundamental solution for elastostatics can be written as
Uy = 2Re[Qi1Aj1ln(Z1 —z;) + inAjzln(ZZ - Zé)] (4)
Where q;xis equal to
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ay i + agp — aq6lt )
i = a
ik a4 + % — e
z, 2’ the complex variables Defining as [36]:
_ (%1 _ (X1t X
Z= {Zz} - {xl + Hzxz} (6)
. (7 x'y 4+ ux'
2 z{’1}={ 1t ,2} 7)
Z 2 X1+ px

X1 and x; are the field point co-ordinates, x'yand x',are the source point co-ordinates.

Ay is the solution vector of the linear system.

4. Results and discussion

In this section, different microstructures (RVEs) were adopted, whose homogenized
constitutive responses are compared with those obtained from the FEM model for the
microstructure proposed in [16], [18], and [19] in order to validate the formulation developed
here. In this comparison, the same mesh was always adopted for both BEM and FEM models,
that is, for the finite element model, the triangular elements were adopted coinciding with the
triangular cells of the model developed with the BEM. It is worth mentioning that although they
are not presented here, convergence tests of the results with the mesh refinement were tested for
both the BEM and the FEM model. As the two numerical models are quite different, a mesh was
adopted that presented good results for both methods, in order to compare the results. Thus, in
order to simulate the incremental loading process related to the problem of the macro-continuum
in a multi-scale analysis, any deformation is imposed on the RVE in increments. Then, after
solving the RVE for each strain increase, the homogenized values of the stress vector and the
constitutive tensor are obtained. It is important to note that an analysis of the convergence of the
results with the mesh refinement was done in all examples. Thus, when this study is not
presented, we always used a mesh whose results had already achieved this convergence.

4.1 Influence of the volume fraction of inclusions

In this first set of RVEs, an elastic inclusion was defined at the center of the RVE, the behavior
of the matrix material being governed by the constitutive model of von Mises. Different volume
fractions were considered for this inclusion, in order to verify how it influenced the constitutive
response of the RVE. In all calculations, the model of periodic fluctuations in the contour of the
RVE was adopted. The following volume fractions were adopted: fv = 10%, fv = 30% and fv =
37% (see Figure 1). The following properties were adopted for the inclusions, which are adopted
as elastic: Elastic modulus E = 200GPa and Poisson's coefficient v = 0.2. For the matrix it was
adopted: E = 70GPa, v = 0.3, yield stress oy = 243MPa and hardening module K = 2.24GPa. The
following strain vector was imposed on the RVE in 25 increments: {€} = {el €2 €12} = {- 0.0015
0.0048 0}.

The meshes considered for the RVE (with fv = 10%, fv = 30% and fv = 37%) contain,
respectively:

a) 220 cells and 131 nodes (40 contour elements and 12 interface elements),
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b) 204 cells and 123 nodes (40 contour elements and 20 interface elements) and

c) 236 cells and 139 nodes (40 contour elements and 24 interface elements).

In Figure (1), the tension is homogenized in the x2 direction along the incremental process and
considering the three different RVEs. As expected, the most rigid response refers to RVE with fv =
37% and the most flexible response refers to RVE with fv = 10%. In addition, in Figure (1)it is
noted that the results of the BEM and the FEM are very similar.

4.2 Calculation of the tensors of macroscopic deformations

Using the geometric data shown in Fig. 2, referring to the AS4 epoxy laminate 3501-6 with
respect to the orientation of the fibers and with a thickness of 1 mm, the analysis was carried out
in the plane of the laminate, using the BEM for the anisotropic elasticity, and one deduces the
tensors of deformations associated with internal material points. For this, we consider the
laminate with the outer contour and the central hole discretized by 7 discontinuous quadratic

elements and 52 internal material points.
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Fig 1. Homogenized stress in the x2 direction, considering different volume fractions for the
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Fig 2 . Unidirectional laminate with central hole subjected to a positive displacement,
0 being the orientation angle of the fibers.
For a laminate with 6 = 0 ° fibers subjected to positive displacement in the right edge along the
0.20 mm axis and restrictions on movement in and from the left and / or right directions, as

shown in Figure 3. The strain tensors were obtained from each internal material point, which
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refers to the tensors of the macroscopic deformations, which are identical to the tensors of the
homogenized EVRS deformations. The graphs shown in Fig. 4 and Fig. 5 show the values
obtained from the deformation tensors for the internal points of the laminate, with respect to the
same values obtained using the ABAQUS finite element software, where the laminate was
discretized by a linear quadrangular finite element mesh at 4 knots, a length of each element of 2.
The figures also show the average percentage of relative errors obtained for each point, which

notes that the results are consistent and the average percentage of errors is the lowest.
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Fig 3. Discretization of the laminate and boundary conditions.
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b) Mean relative error percentage = 8.32 %
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Fig 4. Deformation of internal points in (a) The x direction. (b) The y direction.

3,0 Mean relative error percentage = 11.81 %
2,5+
2,0
1,5
1,0 H
0,5
0,0 -
-0,5
-1,0
-1,5
-2,0
-2,5
-3,0
-3,5
-4,0 e

5 0 5 10 15 20 25 30 35 40 45 50 55

Internal Material Points (EVR)

&y (Mm/mm) x 10°

Average percentage of relative error = 11.81%

Fig 5. Deformation of internal points in xy direction.

4.3 Square plate clamped on all four sides under uniformly distributed load

Consider a recessed plate (Figure 6) loaded at time To = 0 s by a step-type load q = 2, 07 x 106
N / m2. The plate is orthotropic and has the following properties and dimensions:

E2 = 6895 MPa, E1 = 2E2, G12 = 2651.9 MPa, v12=0, 3, p =7166 kg / m3,

a = 254 mm and thickness h = 12, 7 mm.

The static bending moment of the plate's central node is given by mstatx = 4,06 x 103N.m / m

and the time normalization factor by
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Fig 6. Square orthotropic clamped plate.

The plate was discretized using 12 discrete square contour elements of the same length and
time step AT = 2, 1915 x 10-5 s. The problem was analyzed using 1, 9 and 25 internal points
evenly distributed. Figure 7 shows the bending moment of the central node of the plate as a
function of time. In addition, results using the MLPG and finite elements presented by Sladek et

al. [29].
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Fig 7. Bending moment of the central node of the plate as a function of time, varying the number

of internal points.
It can be seen that internal points are necessary to obtain a greater precision of the results, as

shown in Figure 6. With only one internal point there is an expressive difference in relation to the

other results. The result with 25 internal points proved to be closer to the solutions obtained by
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Sladek et al. [29]. The result with 9 internal points had a good agreement with the results of the

literature.

5. Conclusion

Failure analysis of multi-layered composite structure has been studied in the present work. The
laminate considered for the present failure analysis is a ten-layered ply. The Tsai-Hill and
maximum deformation failure criteria are in good agreement since the AS4 epoxy laminate 3501-
6 structure will not fail under the given set conditions. The results obtained indicate that the
failure criteria used are good and can be used to predict interfiber failure in multi-layered
composite structure.

The results presented in this paper show that computational micromechanics has become a
powerful tool for linking the microstructural characteristics of composites reinforced with
unidirectional fibers with the properties of macroscopic layers. These capacities were gathered in a
kit of calculation tools for Abaqus, BEM, Matlab.Which allows us to carry out the design of
laminated composites, by calculating the macroscopic properties (rigidity, force) from the
mechanical properties of the fibers, of the matrix and of the interface and of the volume fraction,
of the shape and of the spatial distribution of the fibers. This tool is very useful from an industrial
point of view to select new material configurations with properties optimized for
specific applications and to provide the input data for the structural analysis of laminates in the
framework of computational mechanical meso.

The microstructure-based numerical modelling concept presented in this pater constitutes a
promising method for the design of new composites. The potential of the approach is its
suitability to be applicable to any complex microstructure. A microstructure-based model is much
more versatile and universal than an analytical approach, since arbitrary microstructures with any

number of phases, morphology and properties can be modelled.

References

Milton G W 2001 Theory of Composites (Cambridge: Cambridge University Press)

Kochmann, D. M., &Venturini, G. N. (2013). Homogenized mechanical properties of auxetic
composite materials in finite-strain elasticity. Smart materials and structures, 22(8), 084004.

D. H. Allen, Homogenization principles and their application to continuum damage mechanics.
Composites Scienceand ~ Technology. 61 (15) (2001) 2223 - 2230.
https://doi.org/10.1016/50266-3538(01)00116-6.

P. Fedelifiski, T. Czyz, G. Dziatkiewicz, R. Gérski, & ]. Praszny, Advanced computer modelling
inmicromechanics. Monografia, volume 427, EditeurWydawnictwoPolitechnikiSlaLskiej, 2013

E. J. Pineda, A. M. Waas, B. A. Bednarcyk, and C. S. Collier, Multiscale model for Progressive
damage and failureof laminated composites using an explicit finite element method. In 50th
AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference,
2009, California. https://doi.org/10.2514/6.2009-2545.

Tob Regul Sci. ™ 2023;9(1): 5431-5442 5440


https://doi.org/10.1016/S0266-3538(01)00116-6
https://doi.org/10.2514/6.2009-2545

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Rai Naceur Bouharkat et al.

Damage Development Analysis [n Composite Materials By The BEM

P. Proch’azka. Homogenization of linear and of debonding composite using the BEM.
Engineering  Analysis withBoundary Elements, 25 (9) (2001) pp.753 - 7069.
https://doi.org/10.1016/50955-7997(01)00066-2.

G. K. Sfantos and M. H. Aliabadi, Multi-scale boundary element modelling of material
degradation and fracture.Computer Methods in Applied Mechanics and Engineering, 196 (7)
2007 :1310-1329,https://doi.org/10.1016/j.cma.2006.09.004.

E. Weinan, B. Engquist, X. Li, W. Ren & E. Vanden-Eijnden, Heterogeneous multiscale
methods: areview. Communications in computation al physics, 2 (3) 2007 367-450.

Aboudi, J., 1991. Mechanics of Composite Materials, A Unified Micromechanical Approach.
Elsevier Science Publishers, Amsterdam.

Nemat-Nasser, S., Hori, M., 1993. Micromechanics: Overall Properties of Heterogeneous
Materials. Elsevier Science Publishers,Amsterdam.

Xia, Z., Chen, Y., Ellyin, F., 2000. A meso/micro-mechanical model for damage progression in
glass—fiber/epoxy cross-ply laminates by finite-element analysis. Composite Science and
Technology 60, 1171-1179.

Ellyin, F., Xia, Z., Chen, Y., 2002. Viscoelastic micromechanical modeling of free edge and time
effects in glass fiber/epoxy cross-ply laminates. Composites, Part A 33, 399-409.

C. E. Guillaume, W. VOIGT.—UeberadiabatischeElasticititsconstante (Sur des constantes
élastiques adiabatiques); Wied. Ann., t. XXXVI, p. 743 1890; 1889.

A. Reuss, Calcul de la limite d'écoulement des cristaux mixtes sur la base de la condition de
plasticité des monocristaux. ZAMM]Journal of Applied Applied Mathematics and Mechanics
1929, vol. 9, no 1, p. 49-58. https://doi.org/10.1002/zamm.19290090104.

Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of
polycrystals. ] Mech Phys Solids 10 (4) 1962 pp. 343-352.  https://doi.org/10.1016/0022-
5096(62)90005-4.

Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of
multiphase materials. JMechPhys Solids 11 (2) 1963 pp-127-140.
https://doi.org/10.1016/0022-5096(63)90060-7.

D.A.G. Bruggeman, The calculation of various physical constants of heterogeneous substances. I.
The dielectric constants and conductivities of mixtures composed of isotropic substances. Annals
of Physics, 416 1935 pp. 636-791.

B. Budiansky, On the elastic moduli of some heterogeneous materials. ] Mech Phys Solids 13 (4)
1965 pp. 223-227 .https://doi.org/10.1016/0022-5096(65)90011-6.

[19]- A. V. Hershey, The elasticity of an isotropic aggregate of anisotropic cubic crystals. Journal
of Applied mechanics transactions of the ASME, 1954, vol. 21, no 3, p. 236-240.

R Hill, A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics

of Solids, 1965, vol. 13, no 4, p. 213-222. https://doi.org/10.1016/0022-5096(65)90010-4.

Tob Regul Sci. ™ 2023;9(1): 5431-5442 5441


https://doi.org/10.1016/S0955-7997(01)00066-2
https://doi.org/10.1016/j.cma.2006.09.004
https://doi.org/10.1002/zamm.19290090104
https://doi.org/10.1016/0022-5096(63)90060-7
https://doi.org/10.1016/0022-5096(65)90011-6

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Rai Naceur Bouharkat et al.

Damage Development Analysis In Composite Materials By The BEM

E. Kréner, Calculation of the elastic constants of the multi-crystal from the constants of the
single crystal. Journal of Physics, 151 (4) 1958 pp. 504-518. (in German).
https://doi.org/10.1007/BF01337948.

S. Debbaghi, A. Sahli, & S. Sahli, Optimisation and failure criteria for composite materials by
the boundary  element method.  Mechanika, 23(4), 2017 pp. 506-514.
http://dx.doi.org/10.5755/j01.mech.23.4.14881.

[23]- L. Nourine, A. Sahli, & S. Sahli, Failure Criteria Analysis of Laminate CompositeMaterials.
Journal of Solid Mechanics Vol, 10 (3), 2018 pp. 522-531.

Yamani Sara, Sahli Ahmed and Sahli Sara, Damage analysis of the laminated plate. Matériaux&
Techniques, 104 6-7 (2016) 606. DOI: https://doi.org/10.1051/mattech/2017016.

Lekhnitskii SG., “Theory of Elasticity of an Anisotropic Elastic Body,” Holden-Day: San
Francisco, (1963).

Lekhnitskii, S. G., “Anisotropic plates,” Gordon and Breach, New York. (1968).

P. Fedelinski, M.H. Aliabadi, D.P. Rooke, “The dual boundary element method in dynamic
fracture mechanics,”Engineering Analysis with Boundary Elements, 12 (3) 1993 p. 203-
210.https://doi.org/10.1016/0955-7997(93)90016-E.

A. Sahli, S. Boufeldja, S. Kebdani, & O. Rahmani, Failure Analysis of Anisotropic Plates by the
Boundary Element Method. Journal of Mechanics, 30 (6) 2014 pp. 561-570.
https://doi.org/10.1017/jmech.2014.65.

Sladek, J., SLADEK, V., KRIVACEK, ]J., et al. Local boundary integral equations for orthotropic
shallow shells. International Journal of Solids and Structures, 2007, vol. 44, no 7-8, p. 2285-
2303.https://doi.org/10.1016/j.ijsolstr.2006.07.010

Tob Regul Sci. ™ 2023;9(1): 5431-5442 5442


https://doi.org/10.1007/BF01337948
http://dx.doi.org/10.5755/j01.mech.23.4.14881
https://doi.org/10.1051/mattech/2017016
https://doi.org/10.1016/0955-7997(93)90016-E
https://doi.org/10.1017/jmech.2014.65
https://doi.org/10.1016/j.ijsolstr.2006.07.010

