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Abstract

Through this review paper we have presented the different applications of computational biology
in three different research areas, microbiology, pharmacology and epidemiology.

The use of predictive models in bacteriology is simpler because the variables are well determined
and the phenome is almost constant as well as the controlling factors.

In pharmacology the modeling takes two approaches, a linear one and a non-linear one, the
difference is only significant between the definitive and continuous chemical reactions.

Modeling in epidemiology remains a challenge for the researcher in the field because the
prediction depends on several parameters, ranging from the causative pathogen and its
characteristics to the aspects of the impacted population. This diversity creates a wide divergence
in the outcomes, which is difficult to estimate and generalize.

Modeling is a very powerful tool to investigate biological systems, mainly its forecasting and
prediction, which helps to overcome potential hazards and risks, in the light of the global warming
period and other related environmental damages.

Modeling has demonstrated its importance in finding quick solutions in the shortest time possible
and the Corona epidemic is the best proof of this.
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Introduction

Studies and transactions have different names, and the subject matter is presented and
encompassed, but there is no difference because all types of studies and the treatment of
hypotheses are subject to pure mathematics, and the treatment of them is numerically abstractive
and doesn't contemplate any logical overlaps and explanations or take into account the
specialization. (Saaty, 2004 ; Mangal & Mangal, 2013)

Perhaps the return to specialization will occur after the mathematical analysis at the stage of
interpretations and response to hypotheses, and this is where the role of mathematics and its
arbitrary operations resides, for once mathematical logic, especially statistical, has prevailed, we
have given credibility to our study, which is dominated by the logical-mathematical approach.

(Kingsland, 1995)

A model is a simplified construction of a reality aiming at reproducing in order to knowledge
that is not easily accessible through observation or experimentation because it is masked by its
complexity. (Oliva, 2003; Moreno et al; 2008)

The models of biological systems try to describe in detail the parameters of the biological systems
whereas mathematical models and simulation models are interested in the description of a system
in order to description of a system in order to make predictions. (Wiechert, 2002; Deutsch &
Dormann, 2005; Haefner, 2005)

Through this research paper, we will review the mathematical vision of the researcher in biology
and life science through the most important mathematical methods used in the field, which is the
one most complex and widely used, namely the computational modeling of biological

phenomena.

the modelling handles many objectives, from the simplest one which is to provide a descriptive
equation of a phenomenon or its progression and influential factors as in predictive
microbiology, also to identify the possible scenarios for the dynamics and kinetics of a molecule
as in pharmacokinetics or toxicokinetics and it can go very further with the estimation by the
simulation which is the application of the modeling process similar to the epidemiological

models used in the control and monitoring of pandemic.
1. predictive microbiology

A mathematical model is a systematic attempt to translate the conceptual understanding of a real

system into mathematical terms. It is therefore an interesting way of understanding a process
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occurring in the system under consideration National Research Council. If the conceptualization
is good, the model should reproduce the relevant phenomena, thus a mathematical model is a
valuable tool to verify our understanding of how a system works, and the model is a simplified
representation of reality, facilitating prediction or estimation and is expressed in mathematical
language. (Torres & Santos, 2015; Sheridan & Hennessy, 1984).

For example, in microbiology, modelling consists of constructing a model to describe the
evolution of a bacterial population, and then making predictions about this development under
new environmental conditions. (Ross & McMeekin, 1994; Valdramidis, 2016).

The focus was on the exponential growth phase. In 1983, Roberts and Jarvis termed this

approach "predictive microbiology." (Perez-Rodriguez & Valero, 2013).

The assumption behind predictive microbiology is that the evolution of a bacterial population
under given environmental conditions is reproducible; Thus, by considering the environmental
conditions as the constraints defining a field of study, it is possible to predict the response of

microorganisms from past observations. (Altermatt et al; 2015).

Predictive microbiology is a tool combining microbiological, mathematical and statistical
elements to develop models describing the growth or destruction of microbial populations under

certain environmental conditions. (Fakruddin et al; 2011; Whiting, 1995).

The published models describing the growth of microorganisms are mostly empirical models,
they are developed from observations of experimental facts and there are also so-called
mechanistic models that are built from theories about the behaviour of theories about the
behavior of microorganisms and are therefore intellectually more satisfactory (Callon, 1995;
Stavropoulou & Bezirtzoglou, 2019); these mechanistic models are based on biological
phenomena and their phenomena and their understanding, and are sometimes called

phenomenological models. (Craver, 20006).

In practice, the two conceptions in some of the studies of microorganism growth are intertwined,
with models combining mechanistic concepts with empirical observations. In the same way,
many models, originally conceived in a totally empirical way, can eventually find mechanistic

justifications. (Pluta et al ; 2011).

Whatever the chosen approach, descriptive or mechanistic, the criterion of parsimony (minimum
number of parameters), and the biological or graphical significance of the parameters must
always be respected. This last condition allows the parameters to be given an initial estimate that
is consistent with the biological reality in order to fit the model to experimental data. (Thornley
& France, 2007; Anderson, 2008).
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a. Mathematical expression of bacterial growth

After a more or less long latency phase (bacterial adaptation in the culture medium), the growth
is exponential, and can be described by one of the two following parameters: the generation time

(g) or the exponential growth rate (). (Isabelle & Andre, 2006).
(g) is the population splitting time, which is the time interval in hours.
(h) that elapses between two cell divisions.

The growth rate (p), is defined as the specific growth rate in (h-1) the growth rate (dX/dr)

related to the unit of biomass(X).

A simple relationship between growth rate and generation time can be defined:

p=1In2/g
u k Stationary
L
Exponentiel i
].leo Latency o
lag Time >

Figure 1. Growth curve (in semi-logarithmic coordinates) that better describes the growth

parameters. (Peleg et al; 2007)

Main phases of the bacterial growth curve and parameters that characterize them; lag (lag time),

Himay (maximum growth rate), x, and x,,,, (initial and maximum cell densities).

The lag time lag, is defined by convention as the intersection of the line corresponding to the
exponential phase with the horizontal line passing through the initial concentration, x,: The

maximum multiplication rate or growth rate (growth rate per unit density), x,,,.: is the slope

ax*

corresponding to the exponential phase (in semi-logarithmic coordinates).

The growth kinetics observed in practice are far from the simple and classical pattern shown in
Figure 1 and show a large variability. However, efforts have been made to model the first four or

five phases of these kinetics.

The complexity of this biological phenomenon requires the use of nonlinear models to identify
the growth parameters. The term parameter identification is understood here as the estimation of

parameters by minimizing a convergence criterion. (Chou et al; 2006).
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Bacterial growth kinetics are most often represented in semi-logarithmic coordinates, and the
most obvious and classical method of estimating the maximum growth rate is therefore a linear
regression analysis in the linear part of the curve corresponding to the exponential growth phase.

(Peleg, 2000).
b. Classification of models.

Three classes of models have been proposed by Whiting and Buchanan (1993); primary,

secondary and tertiary models.

Primary models describe the evolution over time of the microbial population in a specific
environment. Depending on their complexity, they are characterized by one or more parameters

such as lag time, growth rate, maximum density, etc...,
These parameters are specific to constant environmental conditions over time.

Models describing the effect of environmental conditions (pH, temperature, acids) on the

parameters of the primary models are called secondary models.

The simplest model is the exponential model , which fits the exponential phase of growth well,
but is poorly suited to describe the growths seen in nature, which are generally limited. (Nielsen

& Friberg, 2013).

More complex models that generalize the exponential model by incorporating stationary growth
phases and transitions between different growth phases have been proposed by many authors
using the Gompertz model applied on the decimal logarithm of the bacterial concentration or the

logistic model with delay and break. (Zwietering et al, 1992).

In 1985, a simple extension of the exponential model was proposed by Zamora and Zaritzky to
take into account the lag phase; this model assumes that the start of exponential growth occurs
abruptly without a transition phase and does not take into account either the saturation of the

environment or the decay. (Labuza et al, 1992).

However, a simplification of these two models introduced the classical parameters: initial

concentration (IN,), maximum concentration.

(N,.0), lag time (lag) and growth rate (p); they proposed the two models; Gompertz and the
logistic model. Both assume that growth is maximal from the end of the lag time, which does not

necessarily correspond to reality. (Baty & Delignette-Muller, 2004).

Baranyi et al. (1993) proposed a model combining the logistic braking function with kinetics of

the transition of cells from the lag phase to the exponential phase.
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Rosso (1995a) proposed the logistic model with breakthrough delay. It assumes the absence of
growth during the lag phase and the transition between this phase and the exponential growth

phase (break-up).

dx/Xdt = p,,,, a(t) fx)

X

Xmax

a(®)
& (I(t) = m

fx)=1-

The function (¢) is a strictly increasing sigmoid function, with values in [0,1] and tending

towards 1 when t tends to infinity. The function q(¢) is the physiological state of the cell.

The integral form of this model is as follows:

e_u,maxA(t}_l

y=y0+A({t)—In|1l4+———> .o (Baranyi and Roberts, 1994)

o ymax—y0

This model is based on the assumption that adaptation occurs at the growth rate p,, and

therefore:

a(t) = a(0) =e " avec h,_, In[1 + 1/q0]

The Baranyi model is a four-parameter nonlinear model with: (Lépez et al, 2004)
¥, = In(x,) the neperian logarithm of the initial bacterial concentration,

Ve = 0(x,,,) the neperian logarithm of the maximum bacterial concentration that the starting
population can reach, p,,. the maximum growth rate, h; a constant equal to the product of the

growth rate and the lag time. (Koutsoumanis et al, 2004).

According to a more general version of the Baranyi model, the constant h, can be taken equal to

hO = Popt X ]agmin

The parameters p,, and lag,, are the growth rate and lag time at the optimal growth

temperature, respectively.

The Baranyi growth model is a primary model because it relates the bacterial population
concentration to time; it belongs to the first level of modeling. The secondary models

corresponding to the Baranyi model can be written as:
max ouh, f(T, pH, aw; @

T and pH denote temperature and hydric potential, respectively, a,, is a variable correlated with

the salt content of the culture medium. @ is the parameter vector.
Models using expert and database systems to link the primary and secondary models are called

tertiary models.
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In parallel to this classification, dynamic models can be defined to predict microbial growth

based on the parameters of the primary models that vary over time (time-varying environmental

conditions).

The different types of equations used in predictive microbiology modeling are summarized in the

following table.

Table 1. The different types of equations used in predictive microbiology modelling

Model Equation
Expone [nx0 , t = lag
Pone | rey = |, o
ntial nx0 + pmax - (t — lag) , t > lag
fGo) = lnxp + -
Logisti X) = (X .
ogistic 1+exp (“# (lag — t) + 2)
logistic Inx0 , t =lag
with fe) = {Enxmax — ln(l + Xl;?x — 1) - exp (—umax - (t — lag)) ,t > lag
lead
times
exp(uma:x -A(t)) —1
f(t) =lnxyg+ umax - A(t) —In| 1+ T
Biryani x0
y A(t) = ! l l
}\ (t)=t+ Jmax nlexp(—umax - t) + exp (—pumax - lag) — exp (+umax -t — f
)
= G max - e
& i ompet f(x) =Inx, +A-exp [—exp (#7 (lag —t) + 1)]
E 5 |u A
£ =
4
-~ Square (T) = { 0 , T =Tmin
T root IV = b (T — Tmin ,T > T min
B ¢
N |
\ae) g
g |
S L
S Vumayx
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Cardina
Is

g(X) = Juopt(X) - CMn(X)

CMn(X) =
0
(X—Xmax)-(X—Xmin)"

, X < Xmin

(Xopt—Xmin)" - [(Xopt—Xmin)- (X —Xopt)— (Xopt—Xmax) ((n—1)Xopt+Xmin—n-T

0
Xmax

, X = X max

. Modeling in pharmacology & toxicology

The process by which we use mathematical expressions to describe a real quantitative situation is

called modeling. Modeling consists of writing down in mathematical notation what is first

expressed in words, involving variables as needed. (Aris, 1994).

In this case all the variables that are included in the model are independent of the individuals

affected or exposed to the risk factors, the latter is purely anthropogenic, whereas the model

obtained can be said to b

The linear model (fig. 2) is the most practical in this case and the formula used is :

e an interaction model.

Xipeuennn ,Xp : the studied variables.

Uy Oy oeey Oy les parameters under study.

€ : the error of the model (uncertainty).

Lﬁl

Fig 2. Linear mathematical model adequate for the modeling of xenobiotic dynamics.
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Xenobiotic input

Kas

\' Inter- compartment transfer

Ksa

Kel

| Xenobiotic output |

Fig 3. Symbolic pharmacological and toxicological model suitable for xenobiotic pathway

modeling.

The model shown in Figure 3 can be described by the following system of ordinary differential

equations:

d};i"l) = —[(K AB+ Kel) x X(4)] + KBA x X(B)

dX(B)
1 = KBAXX(B) + KABx X(A)

With:

X(A) : amount of drug in compartment A

X(B) : amount of drug in compartment B

K, et Ky, : transfer constants between compartments A and B
K, : elimination constant from compartment A

To these initial structural models, it is possible to graft specific compartments intended to
represent certain particular structures of the organism, such as the organs in which the drug will

diffuse and exert its action. These diffusion compartments then potentially have an anatomical
reality. (Clairambault, 2009).

a. The PK/PD or TK/TD models

Generally when using an effective compound, one expects an enhanced action as the dose
administered increases, in the case of an effect of the compound on the organism, or on the
whole system, the dose administered, in the case of a continuous effect, an increase in the effect is
expected. Continuous effect. It is thus implicitly assumed that there is a relationship between the

dose of drug administered (D) and the expected effect E. Thus, if we consider a system having as
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input the drug dose and as output an effect E, an effect model can be proposed, directly relating

the administered drug dose D to the effect. (Hayes & Loomis, 1996).
E=f@, D)

Represents the set of model parameters for example of a simple linear simple two-parameter

model is the logarithmic model:
E=a.In (D) +b

There are three major limitations to this kind of modeling, failure to account for inter-individual

variability, absence of chronological dimension of the response and maximizing effect.
(Denechaud., 2020).

b. Linear or log-linear models

Based on the principle of the simple dose/effect model, linear or log linear models linking the

effects to the drug concentration have been proposed (Holford & Sheiner, 1981).
Their mathematical description is presented below:
E=E,+aCyorE=Ej+a*InC ....................... Pharmacology

E, corresponds to a basal state in the absence of medication

ACI _ Kout(Cext(t) — Cint(t))......cveveeeeeeenn... Toxicology

dt

K., absorption rate .

K, elimination rate.

(dC

int

)/dt: Bioaccumulation.

K . (C, (t)): Kinetics of effects.

ext

() -C

nt

c. Non-linear models

From the receptor occupancy theory, which applies the laws of physical chemistry to the effect

produced by a drug on cells, a mathematical formalization has been proposed.

These models involve the ligand concentration [A], the receptor density [Rt], € the intrinsic
activity of the ligand and Ka the association constant between drug and receptor (Pivonka &
Komarova, 2010)

Response = f M] E = Emax.C _Emax.Cy

[A]+Ka T ECs0+C = EC50y +Cy
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With E,, designating the maximum effect, and EC,, corresponding to the concentration for

which the observed effect is equal to half of the maximum effect. This is in fact a special case of

the called Hill model, which includes an additional parameter, sigmoidity coefficient y.

For the toxicodynamic model the equation of a survival probability:
S@) =e—f0t h(t)de

And the mortality risk calculated by the following equation:

h(o) = {b(Cint(t) — NEC+d siCint(t) > NEC
Y=1d si Cint(t) > NEC

NEC: (No effect concentration).

d: (Background mortality).

b: (Killing rate).

The modeling of the effects (therapeutic or toxic) of drugs could be proposed by cited equations.

The TD/TK or PD/PK models built rely largely on nonlinear functions to achieve a complete
description of the relationships between administered doses and observed effects can be achieved.
(Derendorf et al, 2000).

3. Spatial diffusion models of diseases

Infectious disease diffusion models, formerly a strictly theoretical tool, gained acceptance as a

decision-making tool for pandemics.

The use of models began with AIDS in the 1980s and has progressively asserted itself as a
decision-making tool for pandemics. Since then, modeling continues to be an active research

topic by integrating new tools proposed for example the network approach.

Models in epidemiology are first distinguished according to their deterministic or stochastic
character. (Kuhl, 2021; Price-Smith, 2008).

A deterministic model for a set of parameters will have a fixed behavior, which means that the
result is the same each time the model is run. means that the result is the same each time the
model is run. On the other hand, a stochastic model stochastic model includes the notion of
randomness; use of probability laws, which can be done by the variance of the parameters or by
selecting events by drawing random, numbers (Monte-Carlo random numbers). Each realization
of the model will give a different result; A stochastic model is in general less simplifying and

allows including a biological variability, but conversely, from a mathematical point of view, it is
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more difficult to manage and its results are more complex to analyze. (Santner et al., 2003;

Othmer et al., 1988).

A simulation is the application of the modelling process. It differs according to its purpose.
There on the one hand, there is the simulation to predict a state or to estimate a value: this one
starts from an initial state known and/or fixed initial state. And on the other hand, there is the
simulation whose purpose is the study of systems which do not exist or are poorly known: here
the initial state is necessarily unknown and it is a question of determine which states are
attainable from the possible initial states. The objective in this second case is to the acquisition of

knowledge about the modelled system. (Kuipers, 1986).

A model can then be evaluated by performing a sensitivity analysis. A sensitivity analysis consists
in quantifying the influence of the variability of a model parameter on the result. (Hamby,

1994).

Compartmental models divide the study population into epidemiological classes or behaviors
defined by a health state. Most of the time, the following states (mutually exclusive) are used:
susceptible S (never exposed to the pathogen), exposed E (in latency phase), infectious I (in
infectious stage), immune R (cured and protected naturally or induced by vaccination). The state
of the population is then described by the number of individuals in each compartment and its
dynamics corresponds to the flows between compartments (SEIR model) fig. 4. (Sturniolo.,
2021; Getz et al; 2018).

Fig 4. A model of an infection process in an epidemiological design.

The transition from the sensitive state to the exposed state is a stochastic event that occurs with

occurs of the probability calculated at each time step.

An expression of this probability often encountered derives from a Poisson distribution and is

written in its simplest form:
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P = l-e_‘%dt

P is the probability of an individual being infected between time t and t + dt, N is the total

number of individuals in the study of individuals in the study population.

B is the transmission parameter. This rate takes into account the sensitivity and receptivity of

individuals.

The strength of infection, noted & (here, A =p I/N) is the rate of susceptible individuals

becoming infected in a heterogeneous population at a given time.

In many diseases, infectious agents return to the susceptible class upon recovery because the
disease does not confer any immunity against reinfection. Such models are appropriate for most
diseases transmitted by bacterial agents or helminths, and most sexually transmitted diseases
(including gonorrhea, but not diseases such as AIDS) from which there is no recovery). We use
the terminology SIS to describe a disease without immunity to reinfection, to indicate that the
transition of individuals is from the susceptible class to the infectious class and back to the
susceptible class classify. (Meloni et al; 2011; Beldomenico & Begon, 2010).

For example, the simple epidemiological model of Kermack-McKendrick One of the first
triumphs of mathematical epidemiology was the formulation of a simple model by Kermack and
McKendrick in 1927. this simple model whose predictions are very similar to the behavior ,
What has been observed in countless epidemics, which suddenly invade a population, increase in
intensity, and then disappear leaving part of the population intact. (Kermack & McKendrick,
1927).

The Kermack-McKendrick model is a segmented model based on relatively simple assumptions
about rates of movement between different population groups. Interest in epidemiological
models, largely ignored since the days of Kermack and McKendrick, in favor of endemic models.
(Breda et al., 2012).

S = -BSI
I = BSI - al
R’ = ol.4764

In this model, R is determined once S and I are known, and we can drop the R equation from

this model, leaving the system of two equations:

S = psI

I = BSI - al,

Together with initial conditions S(0) = S, I(0) = I,,, S, + I, = N.
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We introduced a small number of infected individuals to the group subject to disease and asked

whether an epidemic would occur.

The model makes sense only as long as S(t) and I(t) remain nonnegative; if S(t) or I(t) reach zero,
the system is considered finite. We note that S < 0 for any t and I > 0 only if and only if S/a > 1.
Thus I increases as long as S/a > 1 but as S decreases for any t, I eventually decreases and
approaches zero. The quantity R, = PN/a determines whether or not there is an epidemic. If R, <

1, the infection dies because I (t) < 0 by t, and there is no epidemic.

Typically, S, = N. If the epidemic was initiated by a member of the study population, such as
returning from a trip with an infection contracted away from home, we would have I, > 0, S, + I,
= N.

A second method would be the epidemic before a visitor from outside the population. In this
case, we would have §; = N. If R; > 1, I will initially increase and this is interpreted as meaning
that there is an epidemic. As a self-contained two-dimensional system of differential equations,
the natural approach would be to find the equilibrium and linearity around each equilibrium to
determine its stability. However, since every point with I = 0 is at equilibrium, the system has an
equilibrium line and this approach is not applicable (the linearity matrix at each equilibrium has
an eigenvalue of zero). The standard linear theory does not apply to systems of ordinary
differential equations, and it is necessary to develop a new mathematical approach. The sum of

the two equations is (S + I) = -al.

So S + I is a nonnegative smooth decreasing function and therefore tends to be bounded when t
— oo. Moreover, it is not difficult to prove that the derivative of the smooth decreasing function
defined below must tend to zero, which shows that Ieo = lim t — o I(t) = 0. So S + I has limit S

Integration of the sum of the two equations from 0 to o gives
—[7S(®) + 1) dt = SO + 10 — Soo = N — Soo =t [, I (t)dt.
Division of the first equation of S and integration from 0 to e gives

log =S, S. =B [, 1 (t)dt.

-EIN-s)
Soo
R, [1-27] 4765

Equation is called the final size relation; it gives a relation between the basic reproduction

number and the size of the epidemic. (Andreasen, 2011)
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Note that the final size of the epidemic, the number of members of the population who are

infected over the course of the epidemic, is N - S_.

This is often described in terms of the attack rate (1-S_/N). [Technically, the attack rate should
be called an attack ratio, since it is dimensionless and is not a rate]. The attack rate is the fraction
of the population that becomes infected over the course of the epidemic. The final size relation
can be generalized to epidemic models with more complicated compartmental structure than the
simple SIR model, including models with exposed periods, treatment models, and models

including quarantine of suspected individuals and isolation of diagnosed infectives. (Brauer et
al; 2019)

The original Kermack-McKendrick model included dependence on the time since becoming

infected (age of infection), and this includes such models.

Integration of the first equation from 0 to t gives.

log S, S =B [ I (t)dt

PN - S@ - 1],

T a
I())+S(0) -a/PlogS(t) =N-a/plogS,.
This implicit relation between S and I describes the orbits of solutions in the (S, I) plane. In

addition, since the right side of equation is finite, the left side is also finite, and this shows that
Seo > 0.

It is not difficult to prove that there is a unique solution of the final size relation. To see this, we

define the function4766.

() =1 S0 R T1 X
g(x) = log— o[ N]

N
g(0+)>0,g(N)<0and g'(x) <0if and onlyif 0 < x < .

0

If Ro < 1, g(x) is monotone decreasing from a positive value at x = 0+ to a negative value at x = N.

Thus there is a unique zero Seo of g(x) with Seo < N.

If Ro > 1, g(x) is monotone decreasing from a positive value at X = 0+ to a minimum at x = N/ Ro
and then increases to a negative value at X = N,. Thus there is a unique zero Seo of g(x) with Seo

< N/ Ro.

In fact, g (%) = log Ro- Ro+ S, /N

<logRo-Ro+ 1.
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Since log Ro < Ro - 1 for RO > 0 and Seo < S; / Ro, we actually have

(2)<o.

An important question is how the basic reproduction number changes if a parameter of the
model varies. If Ro, and therefore Se, is a function of a parameter 1, implicit differentiation of

the final size relation gives (Ro /N —1/S_) dS_/dn=dRodn (1 -S_/N).
Because of if Rg increases then Seo decreases.

A graph of the function g(x) presented in figure 5.

alx)

7

The finals formule of the model are
p>1-a/pN=1-1/Ro.

Initially, the number of infectives grows exponentially because the equation for I may be

approximated by :
[=BN-a)l
r=PN-a=0a(Ro-1) 4767

Simple Compartmental Models for Disease Transmission This initial growth rate r may be
estimated from incidence data when an epidemic begins. Since N and o may be measured, B may

be calculated as:
B=r+a/N.

However, because of incomplete data and under-reporting of cases, this estimate may not be very
accurate. This inaccuracy is even more pronounced for an outbreak of a previously unknown
disease, where carly cases are likely to be mis-diagnosed. Because of the final size relation,
estimation of  or R, is an important question that has been studied by a variety of approaches.

Estimation of the initial growth rate from data can provide an estimate of the contact rate P.
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However, this relation is valid only for the model and does not hold for models with different

compartmental structure, such as an exposed period. (Manski & Molinari, 2021).

If BSO > a, I increases initially to a maximum number of infective when the derivative of I is zero,

that is, when S = o/p. This maximum is given by

I...=S0 + 10— a/p log SO — a/P + a/P log a/P,

Obtained by substituting S = a/B, I =1, in the previous equation.
Conclusion

Computational analysis of natural data phenomena has undergone a considerable progress linked
to artificial intelligence and computing machines, though the same was mainly based on

mathematics and processed life in its quantum and data processing aspects.

Modeling is one of the most effective ways to study natural mechanisms, especially the
forecasting and predicting ones, and provides a great hope to outperform the resulting dangers in
the light of the period of Global Climate Warming and other major environmental damages.
Modeling demonstrated its significance in finding quick solutions in the shortest possible time

and Corona virus is the best evidence.
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