Djamel Hassani et al.

Analyzing the Performance of Integrated Collector Storage Solar Water Heater using Neuronal Approach

Analyzing the Performance of Integrated Collector Storage Solar Water
Heater using Neuronal Approach

Djamel Hassani ', Hamid Abdi?, Salah Hanini , Kamel Daoud

'LBMPT, University of Medea, Algeria; 2E2D, University of Blida, Algeria

(Corresponding Author): *Email: djamelhassani@hotmail.com

Received: 21-04-2023 Accepted: 12-08-2023 Published: 17-08-2023
Abstract

One way to directly benefit from solar energy is through solar thermal systems that produce hot water. These
systems function similarly to greenhouses, where sun rays are absorbed by absorbers and then used to reheat
fluid that flows through a heating device. Ongoing research aims to improve the efficiency of these systems to
achieve more effective models. A news method for data processing and modeling is the neural method, which
operates similarly to biological neural networks. This technique allows for accurate models with a minimal
number of parameters and can process even nonlinear and multivariable phenomena by learning from
representative experimental data. This work aims to develop a strategy based on artificial neural networks to
calculate the relevant parameters of a solar system and characterize a solar water heater, specifically focusing on
the self-storage sensor that converts sunlight into thermal energy. By embracing the potential of neural
networks in solar technology, this initiative not only seeks to refine parameter calculations but also to elevate
the overall operational performance of solar water heaters, contributing to the ongoing advancement of
sustainable energy solutions.
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1. Introduction

One method of utilizing solar energy directly is through the production of hot water using heat
sensors, which convert sunlight into heat energy. Ongoing research is being conducted to improve the
efficiency of these devices through the development of more efficient models. Previous studies have
focused on the use of neural methods for predicting, optimizing, and characterizing the performance
of solar energy systems. For example, Kalogirou et al. [1] reported the use of an ANN model for
estimating the performance of a thermosiphon solar water heater, while Kalogirou [2] utilized an
ANN model and genetic algorithms for the optimization of solar systems. Additionally, ANN has
been used for predicting flat-plate collector performance parameters by Kalogirou [3], determining
the effectiveness of a plan solar sensor by Sézen et al. [4], and developing a diagnostic system for solar
water heaters based on ANN by Kalogirou et al. [5]. Souliotis et al. [6] presented a combination of an
appropriate ANN and TRNSYS for predicting the performance of an Integrated Collector Storage
(ICS) prototype. Esen et al. [7] used both ANN and wavelet neural network (WNN) models to

model a new solar air heater (SAH) system.
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The neuronal approach is a novel modeling technique that offers several advantages over traditional
methods as it does not rely on explicit knowledge of physical laws. This approach is particularly useful
for dealing with nonlinear phenomena and multivariable systems, as it can be configured through
learning from representative experimental data. The objective of this study is to develop a strategy
based on artificial neural networks to optimize the important parameters of a solar self-storage water
heater with a reflector. The reflector serves to concentrate sunlight on the probe's surface and can also

act as an insulating jacket to minimize heat loss during nighttime.
2. Solar energy in southern Algeria

Despite its strategic geographical location, Algeria has failed to fully capitalize on the potential of solar
energy, as its utilization has remained stagnant for more than forty years. However, Figure 1

illustrates that Algeria boasts one of the largest solar fields globally.
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Figure 1. Map of the average sunlight received on the ground in the world.

The amount of sunshine in the region exceeds 2000 hours per year, and can even reach 3900 hours in
highlands and Sahara (Fig. 2). According to Boudries et al. [8], the daily solar energy received on a
1m? horizontal area is approximately 5SkWh throughout the country. The annual solar energy received
is around 1700kWh/m? in the North and 2263kWh/m? in the South, as stated by MEM [9]. Due to
the long distances between communities and the scattered population in the Sahara, the use of
renewable energy is crucial for sustainable development in southern Algeria, as it significantly reduces

the expensive cost of power lines.
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Figure 2. Solar Potential in Algerian Sahara [8].
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3. Thermal sensor

The assessment of a solar system's thermal performance relies on mathematical models derived from a
heat balance and measurements carried out according to established standards. The most commonly
used model for flat plate collectors is the Hottel-Whillis-Bliss (HWB) model, which was developed in
1959 by Bliss [10]. Various standards have been created, such as ASHRAE Standard 93-77 by the
American Society of Heating in 1978 [11]. However, these standards, which are based on quasi-
stationary heat balance, are not appropriate for sensor self-storage due to the large heat capacity of
water stored in the sensor element storekeeper. The relaxation time of the sensors self-storage is in the
range of several hours, making it impossible to achieve a quasi-stationary regime during testing in the

external environment [12, 13].

In the existing literature, there are few studies specifically focused on characterizing sensors self-
storage. Typically, this characterization is based on experimental measurements of the temperature of
the collector surface. Authors usually employ mathematical models that assume uniform storage
temperature, resulting in a discrepancy between the experimental and calculated results. To address
this issue, we propose a non-conventional modeling approach that utilizes a technique not dependent

on explicit knowledge of physical laws but instead requires numerical data.
4. Presentation of solar sensor

H. Abdi conducted an experimental study of the solar system at the experimental station of solar
equipment in rural Saharian of Adrar, located in the south of Algeria. The coordinates of the site are
latitude 27.88° longitude - 0.17° W; and it is situated 264m above sea level with an albedo of 0.2
[14].
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Figure 3. Experimental setup [14].

Figure 3 showcases the design of the sensor-storer solar system, which consists of four tanks connected
together and equipped with a reflector. The prototype is constructed using galvanized steel sheets,
with each tank open on the side exposed to solar radiation. The sensor-storer, also made of galvanized

steel, is placed inside the tank. To minimize heat loss and create a greenhouse effect, the tank is
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covered with glass. Additionally, the sensor is equipped with a reflector that concentrates solar
radiation on the collector surface and acts as an insulating blanket to reduce heat loss at night.

Temperature measurements in the room (T.) and water storage tanks (T), T, T3, and T4) are
recorded using type K thermocouples (Chromel / Alumel). These thermocouples are connected to a

Hydra Data Acquisition Unit (Model 2620 A), which has 20 channels for data recording. The global

irradiance is measured using a pyranometer.

The sensor-storer undergoes three test series:

1. In the first series of tests, the sensor operates with a reflector and insulation applied before use.
During daily tests, the insulating blanket is placed on the sensor at 4:30 pm and removed the
next day at 8:00 am.

In the second series of tests, the sensor operates with a reflector but without front insulation.

In the third series of tests, the sensor operates without reflectors and front insulation.

5. Artificial neural network model

The concept of artificial neural networks draws inspiration from the way biological neurons handle
information. It is applied to develop software simulations that involve interconnected processing
elements in a parallel manner. In a similar fashion to how dendrites of biological neurons receive
electrochemical impulses from other neurons, artificial neurons in these networks receive analogous
inputs. Consequently, artificial neural networks can be seen as a collection of processing elements and

weighted connections resembling a network of neurons.

The arrangement of artificial neurons in layers (Fig. 4a) involves the input layer receiving inputs (s;)
from the real world. Each subsequent layer then receives weighted outputs (wj.s;) from the previous
layer as its input, creating a feed forward artificial neural network (ANN). In this type of network,
cach input is passed forward to the next layer where it is processed. The outputs of the final layer
serve as the outputs to the real world. Neurons in hidden or output layers in a feed forward ANN
have two main functions: they calculate the sum of weighted inputs from multiple connections and a
bias value, and then apply a transfer function to this sum. They also transmit the resulting value

through outgoing connections to the neurons of the following layer, where the same process occurs.
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Figure 4. Representation of neuron formal and Multi-layer feed forward neural

network for the prediction of the four temperatures of tanks.
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The calculation of the output is accomplished using a transfer function, also referred to as an
activation function. It is preferable for this activation function to exhibit a step-like behavior.
Additionally, as optimization algorithms necessitate continuity and differentiability at all points,
certain characteristics outlined in previous research by Hassani et al. [15, 16] and Si-moussa et al. [17]

are desired.

The number of neurons in the input and output layers is determined by the count of independent
and dependent variables, respectively. The user defines both the number of hidden layers and the
quantity of neurons contained within each hidden layer. The construction of the model involves a
training process, during which a collection of experimental data related to independent variables is
presented to the network's input layer. The resulting outputs from the output layer constitute
predictions for the dependent variables within the model. The network learns the connections
between the independent and dependent variables by iteratively comparing projected outputs with
experimental results. Subsequent adjustments to the weight matrix and bias vector of each layer are
performed through a back propagation training algorithm. Consequently, the network constructs a
neural network model capable of reasonably accurate predictions for output variables within the
model's defined space, as established by the training dataset. As such, the primary aim of ANN
modeling is to minimize prediction errors for validation data introduced to the network after the

training phase concludes.
gp

While ongoing discussions regarding model selection strategies persist, it is evident that the effective

utilization of ANN for engineering problems' modeling is significantly influenced by four main

factors:
1. Network type,
2. Network structure (number of hidden layers, quantity of neurons per hidden layer),
3. Activation functions,
4. Training algorithms.

It's well established that varying the number of neurons in the hidden layer(s) significantly impacts
the predictive ability of the network. The most common approach for optimizing ANN performance
is to adjust the numbers of neurons in the hidden layer(s) and select the architecture that

demonstrates the highest predictive ability [15, 16, 17].

The design and optimization of the ANN were conducted through three primary stages. Initially,
essential parameters such as transfer functions and training functions were tested in the first stage.
Subsequently, in the second stage, various pre-processing methods were assessed to identify the most
suitable one for the network. Finally, the third stage involved fine-tuning the network by determining

the optimal number of hidden layers and neurons in each layer.

In Figure 4b, we can observe the architecture of the utilized Artificial Neural Network (ANN)
designed to predict the temperatures of tanks. This ANN is composed of four layers, including an

input layer, two hidden layers, and an output layer. The input layer incorporates all the relevant input
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factors, which undergo processing through the two hidden layers. Eventually, the output layer

generates thC output Vector.

In Table 1, a comprehensive overview of the neural networks developed for temperature prediction in
the tanks is presented. The table includes essential information such as the learning algorithm, the
number of hidden layers, the number of neurons in each hidden layer, and the activation function

employed in the respective networks.

Table 1. Characteristics of neural networks developed for the prediction of the four temperatures of tanks

Type of network Multi-layer feed forward neural network

Layer Number of neurons Activation function
Input layer 8
First hidden layer 18 Hyperbolic tangent sigmoid
Second hidden layer 18 Hyperbolic tangent sigmoid
Output layer 4 Linear
Training Algorithm BRBP using Levenberg-Marquardt optimization

Figures 5 to 8 display the performance of the neural network model for predicting the first
temperature (T1), the second temperature (T5), the third temperature (T5) and the fourth temperature
(T4). The correlation coefficients for these temperature predictions are 0.997, 0.998, 0.998 and 0.996

respectively.
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Figure 7. Performance of ANN to calculate the third Figure 8. Performance of ANN to calculate the
temperature (T3). fourth temperature (T5)

Table 2 presents the commonly used deviations calculated for the four predicted outputs of the ANN
model (T, T3, T3, and T4) across the entire dataset:

Average Absolute Relative Deviation:

100 <. [T &P _Tcal
AARDT, (%)=—) |—— 1)
l( 0) n ; Texp
Average Square Relative Deviation:
100 (T —T@ )
ASRDT (%)=—") | —— ()
%)== Zl[ - ]
Average Absolute Deviation:
n
AADT :%ZTW—TC”‘" (3)
i1

Table 2. Statistical analyses of the error of the predicted results

Systems AARDT; (%) | ASRDT: (%) | AADT;
T; 1.115 0.023 0.530
System 1 1> 0.861 0.014 0.460
Ts 0.862 0.015 0.482
T4 1.421 0.035 0.798
T; 1.401 0.036 0.452
System 2 1> 1.068 0.024 0.383
T 1.125 0.026 0.428
T4 1.698 0.055 0.653
T; 1.559 0.055 0.435
System 3 1> 1.184 0.039 0.360
T3 1.113 0.033 0.376
Ty 1.827 0.073 0.624
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6. Experimental and neuronal characterization

In this section, the results obtained from the ANN were utilized to determine the optical and thermal
characteristics of solar water heating systems (ICSSWH). These results were then compared and

contrasted with the experimental characterization.

For the characterization of the sensor, the mathematical model developed by David Faiman [12, 13]
was adopted. This model introduces the concept of Maximum Useful Efficiency (MUE), aiming to
derive an algebraic expression similar to that proposed by Hottel-Whillier-Bliss [10], but with the
distinction that the variables represent average values rather than instantaneous ones. The Maximum

Useful Efficiency is defined by the following equation:

n:KFEno_FEUL(-r_f_-r_a)/T ()

In Equation (4), the symbols represent the following variables: Tt represents the temperature of the
water in storage, T, denotes the room temperature, and I represents the irradiance on the aperture
plane of the collector. 1, is the optical efficiency of the collector, while Ur represents the heat loss
coefficient of the collector-storage unit. K is the incidence angle modifier, and Fr is an enthalpy

retrieval factor defined as:

F. =
M,C, +M.C,

Where: My, and C,, are respectively the mass and heat capacity of the water. M and Cg are the

respective mass and heat capacity of the material from which the collector-storage unit is fabricated.

The bars in Equation 4 indicate average values over the daily heating period, from sunrise until the
time the water reaches its maximum daily temperature. The maximum useful efficiency (1) is defined
as the ratio between the maximum energy extracted by the fluid and the incident energy on the sensor

plane:

— MWCW(Tmax _Tsunrise) (6)

A 10t

In the evaluation of Equation (4), the collector aperture area (A.) is taken into account, and the
integral is computed over the time interval from sunrise until the water reaches its maximum

temperature. The results obtained by applying Equation (4) are depicted in Figures 9 to 12.

Figures 9 and 10 illustrate the thermal performance variation of the sensor for both systems: one
without a reflector and the other with a reflector. It is evident that the thermal efficiency of the sensor
is significantly improved when equipped with a reflector, as indicated by the results obtained from the

experimental and neural methods.
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ANN model of ICSSWH without reflector ANN model of ICSSWH with reflector.

Figures 11 and 12 present a comparison between the experimental and neural method results. It is
noteworthy that the models developed using the neural method is highly satisfactory, despite a slight
difference observed between the curves. This slight difference indicates a small variation between the
coefficients of heat loss calculated experimentally and those computed by the neural network. Overall,
the neural network-based approach demonstrates good accuracy in capturing the sensor's thermal

characteristics.

Table 3 provides a comprehensive summary of the thermal and optical characteristics of the two
ICSSWH systems, one with a reflector and the other without a reflector. The data is obtained
through both experimental methods and the ANN model. Upon analysis of this table, it becomes
evident that there is a good agreement between the results obtained from the two methods used.
Furthermore, the presence of the reflector has a positive impact on the performance of the ICSSWH

system, as indicated by the improvement in its thermal and optical characteristics.
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Table 3. Thermal and optical performance of ICSSWH for the two series of tests

Test MUE equation
es
Experimental temperatures Predicted temperatures by ANN model
n=0631-6.779(T, —T, )/ n=0585-5661(T, ~T, )/
ICSSWH KFg7, =0.631 KFgr, =0.585
With reflector and with | £, - 6.779 W/m>C FrUL = 5.661 W/m*C
insulator Fr =0.979 Fr=0.979
UL = 6.924 W/m*C UL =5.782 W/m*C
n=0585 5842, —T,)/1 n=0850- 4571 (T, -T, /T
ICSSWH KFgro = 0.585 KFgr, = 0.550
Without reflector and | £/, - 5.842 W/m*C FeUL = 4.571 W/m*C
without insulator Fr=0.979 Fe= 0.979
UL =5.967 (W/m*C) UL = 4.669 W/m*C

To compute the night-time heat loss coefficient, data is collected between sunset and sunrise of the
next day. For each 5 minute interval during this period, the difference between the mean water
temperature and ambient temperature is calculated. The results are then averaged over a specific

duration denoted asAt =t t

sunrise  “sunset

This average (T_f—T_a) was then divided into the temperature difference (Ti —Tf) between the water

initial temperature and final temperature during this time. The heat loss coefficient can be calculated

as follow [13]:

U, - (M,C,, + Miccslﬂ ~T¢) ”
A AT, -T,)

Figure 13 and Table 4 present a summary of the calculation results obtained through both
experimental and neural methods for the night variation of the internal energy of the ICSSWH
systems (with insulation before and without prior isolation). We notice that the energy variation

follows a linear formas (y = - ax).

Table 4. Night time thermal properties of ICSSWH for the two series of tests

Test Equation of the storage internal energy
es Experimental temperatures Predicted temperatures by ANN model
mc Lt _ 5185(? ?) |\/|can 5111(? ?)
— = t —la —=-5. -
ICSSWH a a b
Without insulator Uid = 5.185 WI"C UlA=5.111 W/°C
Ur=6.10 W/m*C UL =6.01 W/m*C
ot — _ o, — _
Mc = 20237, -T,) mMc Lt = 2871(T, -T,)
ICSSWH at ot
With insulator UiA=2.923 WI°C UiA = 2.871 W/°C
UL = 3.44 W/m*C UL =3.38 W/m*C
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Figure 13. Internal energy variation at night of ICSSWH in the two cases experimental and neuronal.

The negative values of internal energy in Figure 13 indicate the loss of thermal energy during the
night. We can see that the presence of the insulating blanket has proven effective in minimizing heat
loss during this period. The agreement between the experimental and neural method results for the
internal energy variation is evident from the linear pattern observed. Moreover, the results obtained
from the ANN model show a significant agreement with the results obtained from the experimental.
The heat loss coefficients are found to be very close, indicating good accuracy and agreement between

the neural model and the experimental data.

7. Conclusion

In this study, we introduced the neural method for analyzing the performance of solar water heater.
The robustness of this method was demonstrated by the excellent agreement observed between the
results obtained from neural networks and experimental work. The findings of this research
underscore the significance of the reflector, as it has substantially enhanced the performance of the
sensor-storer by concentrating solar radiation onto the collector surface. Moreover, it serves as an
insulating blanket during the night, effectively reducing heat loss during that period. The combined
effects of the reflector have contributed to improved overall efficiency and performance of the solar

water heater system.

Nomenclature Greek letters

A Total system surface area, m* Mo Collector optical efficiency

AADT;  Average Absolute Deviation n Maximum useful efficiency (MUE)
AARDT;  Average Absolute Relative Deviation

ASRDT;  Average Square Relative Deviation Subscripts

b bias s

Ce Heat capacity of empty collector—storage unit, ] kg °C?! ANN Amﬁ?lal neural ‘nen‘wrk .

C Heat capacity of water, ] kg’ °C" BRBP Bayesian regularization back propagation
Fg System enthalpy retrieval factor, FFBP Feed forward back propagation

I Solar irradiance on collector aperture, W m? ICSSWH Integrated collector-storage solar water heater
K Collector incidence angle modifier, MUE Maximum Useful Efficiency

M. Mass of empty collector storage unit, kg

M, Mass of water in storage, kg

5 Output neuron
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t Time, s

A Temperature of water in storage, °C

T Temperature of the first tank

7> Temperature of the second tank

Ts Temperature of the third tank

Ty Temperature of the fourth tank

1; Room temperature, °C

Teal Temperature calculated by ANN

Texp Experimental Temperature

Tr Temperature of water in storage at sunset, °C
1; Temperature of water in storage at sunrise, °C
Ut Heat loss coefficient, W m™ °C?

w; Synaptic weights of neuron

X Input of the neuron
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