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Abstract

The Electric Vehicle Routing Problem (EVRP) is a variant of the traditional Vehicle Routing Problem
(VRP) that deals explicitly with the routing and scheduling of electric vehicles (EVs). It considers
EVs' unique constraints and characteristics, such as limited driving range and the need for battery
charging. Reinforcement Learning (RL) is a type of machine learning that involves training an
agent to make a series of decisions in an environment to maximize a reward. RL has been
successfully applied to various problems, including game-playing, robotics, and decision-making
under uncertainty. Some key challenges in RL include dealing with large state and action spaces,
balancing exploration and exploitation, and dealing with non-stationary environments. RL has
emerged as a promising approach for solving the EVRP in recent years. In the context of the EVRP,
the agent could be an electric vehicle, and the environment could be a city with charging stations
and customer locations. The agent's decisions encompass selecting the most optimal routes and
undertaking specific actions. The reward could measure the efficiency and cost-effectiveness of
the routes taken. RL can find near-optimal solutions to the EVRP in a more flexible and adaptable
way than traditional optimization methods. In this review article, we will discuss the application of
RL to the EVRP, the challenges, and opportunities of using RL for this problem and its variants, the
current state of the art in RL-based approaches for the EVRP, and directions for future research.
Keywords: Electric Vehicle Routing Problem (EVRP), Electric Vehicles (EVs), Reinforcement
Learning (RL).
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1. Introduction

Creating an ecologically friendly transportation system is critical in developing smarter cities. We
are now implementing a new technological solution, such as electric mobility, for adequate urban
transportation, which helps to reduce hazardous emissions. Several prominent organizations are
already considering using commercial EVs in their day-to-day operations in the logistics industry.
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However, given the characteristics of this new technology, they will need to develop practical
route-planning tools. We have recently witnessed continuous growth in Europe's energy
expenditures and hazardous gas emissions. These factors and society’s growing economic,
environmental, and social consciousness have sparked many business green initiatives. In today’s
economy, marketplaces are becoming more open and competitive. A freight transportation
system that is efficient, sustainable, and environmentally friendly is a critical success factor.
Modern transportation businesses are worried about fuel costs and environmental degradation
caused by flows of freight’s greenhouse gas (GHG) emissions.

Transportation is one of the primary beneficiaries of green logistics operations. As a result, it
strives to improve the sustainability of production and distribution processes by considering
environmental and social concerns [1]. The authors of [2] discovered that the transport sector is
responsible for 30% of CO2 emissions in the EU, with urban regions accounting for 40% of
CO2 emissions. Furthermore, according to the United States Environmental Protection Agency
(2016), the transportation sector accounts for 30% of GHG emissions in the United States [3].
Building efficient, faster, and less fuel-consuming transportation networks have been a significant
issue in recent years. Renewable energy technology and efficient transportation operations are
two primary approaches to sustainable transportation. Fuel Vehicles (AFVs) were replaced by
hybrid vehicles (HVS), plug-in hybrid electric cars (PHEVs), and electric vehicles (EVs) to
develop renewable energy technology. Road freight transport, including city logistics, accounts
for 33% of transport emissions [4].

The Electric Vehicle Routing Problem (EVRP) addresses the routing and scheduling of electric
vehicles (EVs). It considers these vehicles” unique constraints and characteristics, such as limited
driving range and the need for battery charging. The EVRP aims to find the most efficient and
cost-effective routes for EVs to follow to serve a set of predetermined customer locations while
ensuring that the vehicles do not run out of power. The EVRP has gained significant attention in
recent years due to the increasing adoption of EVs and the need for efficient and sustainable
transportation systems. The use of EVs can help reduce greenhouse gas emissions and air
pollution, but their widespread adoption is hindered by the limited driving range and availability
of charging infrastructure. Developing efficient routing strategies for EVs is an important
research topic.

In recent years, reinforcement learning (RL) has emerged as a promising approach for solving the
EVRP. RL is a type of machine learning that involves training an agent to make a series of
decisions in an environment to maximize a reward. In the context of the EVRP, the agent could
be an EV, and the environment could be a city with charging stations and customer locations.
The agent’s decisions would be the routes it takes and its actions (e.g., charging the battery at a
certain station). The reward could measure the efficiency and cost-effectiveness of the routes
taken. RL can find near-optimal solutions to the EVRP in a more flexible and adaptable way
than traditional optimization methods. There are several challenges and opportunities in

applying RL to the EVRP. One challenge is the ample state space of the problem, which can

4176
Tob Regul Sci. ™ 2023;9(1): 4175-4192



Abdelkader Kaddour et. al

A Review About Electric Vehicle Routing Problem with Reinforcement Learning

make it difficult for the RL agent to learn and explore effectively. Another challenge is the
dynamic nature of the EVRP, as the availability and demand for charging stations can vary over
time. The RL agent must adapt and learn from experience to make effective routing decisions.
On the other hand, using RL can enable more intelligent and autonomous EV routing, leading
to more efficient and sustainable transportation systems. The remainder of this paper is
structured as follows: In section (2), we will introduce the details of the EVRP. Section (3) will
present the RL and its types. Section (4) discusses previous work that used RL for EVRP. Finally,

we will conclude the work with insight for future work in section (5).

2. Electric Vehicle Routing Problem

The EVRP is a variant of the Vehicle Routing Problem (VRP) in which the vehicles are electric
and have limited range. The EVRP is the process of finding a set of vehicle routes. Each route
services a set of customer nodes and starts and ends at a given depot node. The problem aims to
find the best route plan for electric vehicles that minimizes a given cost function while satisfying
several restrictions and operational procedures for electric vehicles. According to existing studies,

the basic assumptions for the EVRP are as follows [5, 6, 7]:

° Each route starts and ends at the depot node.

° Each customer node is to be serviced by exactly one electric vehicle.

° Electric vehicles can visit a charging station to recharge operations between customers.
° Each charging station can be visited by more than one electric vehicle.

° The locations of the charging stations and the traveling distances from any node (i.e.,

origin or destination) to any charging station are known.

° The battery level of an electric vehicle must always be between 0 and its battery capacity.
° A vehicle’s battery is always fully charged when visiting a charging station.

Following the assumptions above, Figure 1 presents an illustrative example of a solution to the
EVRP involving 15 customer nodes (Cl1, ..., C15), five charging stations (S1, ..., S5), and the
depot node that can also be used as a charging station. Four identical electric vehicles serve
customer nodes by starting their tour at the depot node with a full charge. The percentage values
on the arcs show the battery level of the electric vehicle when it arrives at a customer location or
the depot node. Additionally, since the vehicles are fully charged at stations, battery levels after
charging station visits are set to 100%. In addition to the basic EVRP assumptions, other
commonly used restrictions come from vehicle capacity constraints and time-related restrictions.
Vehicle weight or volume capacity can be considered a constraint where the total weight or
volume of the loads cannot exceed the vehicle’s weight or volume capacity, respectively. Several
assumptions exist for the time-related restrictions that can be summarized into two groups: time
windows for nodes and duration time limits. Time window restrictions state that each customer
node must be serviced within a given time window, and each route must be completed within a
given time window limit of a depot node [8, 9, 10]. Time duration constraints state that the total

elapsed time for a route cannot exceed the duration time limit [6, 11]. Similar to the VRP with
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time windows (VRPTW), arc travel times, customer service times, time windows are given
beforehand, and vehicle travel and waiting. Service times can be determined similarly as in the
VRPTW. In addition, the recharging time at charging stations is computed using a function or
constant value [3, 12, 13]. When time-related constraints are considered for the EVRP, station
charging operations become more critical. Therefore, partial charging of electric vehicles is also

studied in most of the papers[14].
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Figure 1: An illustrative example of the EVRP [14].

The EVRP aims to determine the optimal routes for a fleet of electric vehicles to serve a set of
customer demand locations while considering the vehicles’ battery capacity constraints and the
availability of charging stations. Several variants of the EVRP have been proposed in the
literature to address different specific aspects of the problem:

Capacitated EVRP (CEVRP): where cach vehicle has a fixed capacity to carry goods or
passengers [15].

Time-Dependent EVRP (TD-EVRP): where the customer demand, vehicle speed, and
availability of charging stations vary over time [16].

The EVRP with Time Windows (EVRPTW): where customers have specific time windows for
service, and vehicles must arrive within those windows [10].

Multi-Depot EVRP (MD-EVRP): where the vehicles can start and end at different depots[17].
Dynamic Stochastic EVRP (DS-EVRP): where the vehicles operate in a dynamic and stochastic
environment [18].

Dynamic EVRP (D-EVRP): where the customer demand, travel times, and charging station
availability change over time [19].

EVRP with Battery Swapping (EVRP-BS): where electric vehicles have the option to replace
their depleted batteries with fully charged ones at designated stations [20].

EVRP with Pickup and Delivery (EVRPPD): where the vehicles pick up and deliver goods or

passengers at different locations [21].
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EVRP with flexible deliveries: where the customers are served using a fleet of EVs that can
recharge their batteries along their routes. A customer may specify different delivery locations for
different time windows in this problem [22].

EVRP with Parking Constraints (PC-EVRP): where routing decisions consider parking
constraints at the charging stations and customer locations [23].

Two-echelon EVRP (2E-EVRP): In the first echelon, fossil fuel-powered trucks transport goods
from the depot to a subset of satellites. The second echelon transfers goods from the satellites to

the final customers using EVs [24].

3. Reinforcement Learning

RL is a machine learning type involving training an agent to take action in an environment to
maximize a reward [25]. It is based on learning by trial and error, where the agent receives
rewards or penalties for its actions and uses this feedback to adjust its behavior over time. RL
algorithms use optimization techniques to learn the best actions in a given environment to
maximize the reward, which involves estimating the value of each activity based on its expected
future rewards and choosing the action with the highest value [26]. Standard optimization
algorithms used in RL include dynamic programming, temporal difference learning, and Monte
Carlo methods. In addition to learning the best actions, optimization is often used in designing
RL algorithms. For example, the learning rate selection determines how much the agent updates
its estimates of action values based on new information, which is a vital optimization problem in
RL. The learning rate must be carefully chosen to balance the trade-off between exploration
(trying out new actions to learn more about the environment) and exploitation (taking the best-
known actions to maximize the reward). Overall, the combination of RL and optimization
enables agents to learn and adapt to their environments in real-time, making them highly
effective at solving complex problems in various applications.

3.1 Components of RL

RL consists of several key components, which include [25]:

Agent: The agent is the entity that interacts with the environment and makes decisions based on
the observations it receives. The agent aims to learn a policy that maximizes the expected
cumulative reward over time.

Environment: The environment is the world or system that the agent interacts with. The
environment provides the agent with observations, and in response to the agent’s actions, it
transitions to a new state and provides the agent with a scalar reward signal.

State: A state describes the environment at a particular point in time. The state can be fully
observable, partially observable, or even unobservable. The agent’s policy, in RL, is mapping
states to actions.

Action: An action is an agent's choice in response to its current state. The environment

determines the set of actions available to the agent.
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Reward: The reward is a scalar signal the environment provides to the agent in response to its
actions. The agent aims to learn a policy that maximizes the expected cumulative reward over
time.

Policy: Policy is the decision-making strategy or mapping of the agent that describes how it will
act based on the state of the environment. The policy can be deterministic or probabilistic.

Value function: The value function assigns a scalar value to each state or state-action pair,
representing the expected cumulative reward of being in that state or taking that action. It
estimates how good or bad a particular state or action is. There are two types of value functions,
State-Value and Action-Value.

Model of the environment: A model is an approximation of the environment that the agent can
use to simulate the effects of its actions. This approach can be used to plan actions rather than

relying on trial and error.

Figure 2 demonstrates the action-reward feedback loop of a generic RL model.

Agent
state reward action
S, R, A,
: jt+1 (
— . .
<] Environment |e——

Figure 2: An illustrative example of the generic RL model.

3.2 types of RL

Model-based RL: In model-based RL, the agent acquires a model of the environment, enabling
it to plan actions. This approach offers greater sample efficiency than model-free RL since the
agent can predict action outcomes and plan accordingly. Nonetheless, model-based RL is more
vulnerable to errors in the acquired model, as such errors can propagate during planning,
resulting in suboptimal or potentially harmful policies [27].

Model-free RL: In model-free RL, the agent does not learn a model of the environment but
instead learns a policy directly from experience. This technique can be less sample efficient than
model-based RL, as the agent must interact with the environment to gather data and learn the
policy. However, model-free RL is also more robust to errors in the model, as the agent is not
reliant on a potentially inaccurate environment model [27].

Off-policy RL: In off-policy RL, the agent learns a policy different from the one it currently
follows. This approach proves beneficial in understanding the long-term consequences of actions,

as the agent gains insights into the outcomes of actions it does not undertake [28]. Furthermore,
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off-policy RL can simultaneously learn about multiple policies by acquiring a value function that
assesses the relative return of different policies [29].

Deep RL: It involves utilizing deep neural networks to learn policies or value functions within
the context of RL. This approach has achieved remarkable success across diverse applications,
including games, natural language processing, and robotics [30]. Deep RL algorithms
demonstrate the capacity to learn intricate policies or value functions, which would be
challenging to design manually, and they can effectively learn from raw sensory data, such as
images or audio.

Multi-agent RL: It entails multiple agents interacting with each other and the environment.
This domain can be categorized into cooperative and competitive scenarios, depending on
whether the agents collaborate towards a shared goal or compete [30]. Multi-agent RL presents
additional challenges compared to single-agent RL, as the agents may have conflicting objectives
or require coordination of actions to achieve mutual goals [31].

Hierarchical RL: In hierarchical RL, the learning problem is decomposed into multiple levels of
subproblems, with each level representing a different time scale or abstraction level. This
approach can be advantageous in cases where the environment is too complex to be modeled
directly or when multiple conflicting goals need to be balanced [32]. Hierarchical RL can also be
more sample efficient than flat RL, as the agent can learn about lower-level subproblems
independently and reuse this knowledge when learning higher-level tasks [33].

Transfer learning: Transfer learning in RL involves utilizing knowledge acquired from one task
to enhance learning in a distinct yet related task. This strategy proves valuable in cases where it is
expensive or difficult to collect data for the target task or when a large amount of related data can
be used to learn a good policy. Transfer learning in RL can be challenging, as the differences
between the source and target tasks may be significant, and the agent may need to adapt its
learned knowledge to the new task [34].

Imitation learning: It refers to using demonstrations or expert data to learn a policy or value
function. This approach can be practical when it is difficult or expensive to specify a reward
function or when existing experts or demonstrators can provide data [35]. Imitation learning can
be further divided into behavioral cloning, in which the agent learns to mimic the demonstrator’s
behavior, and inverse RL, in which the agent learns a reward function or cost function from the
demonstrator’s data [36].

Evolutionary RL: Evolutionary RL entails the utilization of evolutionary algorithms, such as
genetic algorithms, to learn policies or value functions. This approach can be advantageous in
scenarios where the environment is stochastic or dynamic, as the evolutionary algorithm can
explore robust policies that perform well across varying conditions. Furthermore, Evolutionary
RL is adept at learning complex policies that would be challenging to design manually [37].
Online RL: In online RL, the agent learns from a sequence of interactions with the environment
without prior knowledge of the transition dynamics or reward function. Online RL can be

proper in cases where the environment is changing or non-stationary, as the agent can adapt to
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the changing conditions on the fly [25]. Online RL can also be more sample efficient than offline
RL, as the agent can learn from each interaction and immediately use this knowledge to improve
its policy.

Offline RL: Offline RL refers to using offline or batch data to learn a policy or value function. It
can be useful in cases where it is expensive to collect data online or when there is a large amount
of data available that has already been collected [25].

Continuous control RL: Continuous control RL refers to using RL techniques to control
systems with continuous action spaces. It can be challenging, as the action space is often
unbounded, and the optimization problem may be non-convex [38]. Continuous control RL
algorithms often use function approximators, such as neural networks, to learn policies or value
functions, and may use techniques such as action repeats or action noise to improve exploration
(39].

Partially observable RL: In partially observable RL, the agent must learn a policy based on a
limited and noisy view of the environment. It can be challenging, as the agent may need to use its
memory or other internal state to reason about the underlying state of the environment [25].
Partially observable RL algorithms often use Bayesian filtering or particle filtering techniques to
estimate the underlying state of the environment. They may use recurrent neural networks or
other forms of memory to store and manipulate this state [40].

Multi-objective RL: Navigating conflicting objectives can pose a considerable challenge to the
agent, as it involves intricate trade-offs between different goals and determining their relative
importance. Multi-objective RL algorithms often adopt Pareto optimization or scalarization
techniques to balance these diverse objectives. Additionally, interactive methods enable the user
to specify the relative significance of different objectives [41].

Safe RL: Safe RL involves utilizing RL techniques to acquire safe policies that satisfy constraints.
This technique becomes crucial when the agent operates in real-world environments and must
avoid harmful or undesirable actions [42].

Inverse RL: Inverse RL, also known as apprenticeship learning, refers to the problem of learning
a reward function or cost function from expert demonstrations [43]. It can be useful in cases
where it is difficult or expensive to specify a reward function manually or when existing experts
or demonstrators can provide data. Inverse RL algorithms often use maximum entropy inverse
RL or inverse optimal control techniques to learn the reward function from the expert’s data.
Hybrid methods: Hybrid methods refer to the combination of RL with other machine learning
techniques, such as supervised learning, unsupervised learning, or planning. Hybrid methods can
be helpful in cases where RL alone is insufficient to solve the problem or when combining RL
with other techniques leads to improved performance [44]. Examples of hybrid methods include
Deep RL with imitation learning or RL with planning and searching.

Adversarial RL: Adversarial RL involves employing RL techniques in scenarios where the agent
and the environment are in conflict or competition. This classification encompasses two

categories: (1) adversarial training, where the agent optimizes its reward by adapting to a fixed or
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learned environment model, and (2) multiagent RL, where multiple agents compete or
collaborate in the environment [36]. Adversarial RL presents challenges, as the agent must learn
to anticipate and counter the adversary's actions.

RL with side information: It utilizes extra data, like natural language descriptions or expert
knowledge, to improve learning or decision-making in RL. This method proves valuable when
raw sensory data is insufficient to obtain an optimal policy or additional domain knowledge can
expedite learning. RL with side information can be divided into two categories: (1) RL with
human input, where the agent receives explicit feedback or guidance from a human user, and (2)
RL with auxiliary tasks, where the agent learns a related but more straightforward task to improve

learning on the main task [45].

3.3. RL algorithms

Several algorithms can be used for RL. Some of the most common algorithms are:

Q-learning: This value-based RL algorithm learns a policy for selecting actions by estimating the
expected long-term reward for each action [40].

SARSA: This value-based RL algorithm learns a policy by estimating the expected reward for
each action based on the current state and the next action taken [47].

DQN: This deep RL algorithm uses a neural network to approximate the action-value function
and learn a policy for selecting actions [30].

A2C: This actor-critic RL algorithm uses a neural network to approximate the action-value
function and learn a policy for selecting actions [48].

PPO: This policy gradient RL algorithm uses a neural network to learn a policy for selecting
actions by directly optimizing the policy objective [49].

TRPO: This trust region policy optimization RL algorithm uses a neural network to learn a
policy for selecting actions by optimizing the policy objective within a trust region [50].

DDPG: This deep deterministic policy gradient RL algorithm uses a neural network to learn a
deterministic policy for selecting actions [39].

TD3: This variant of the DDPG algorithm uses two neural networks to learn a deterministic
policy for selecting actions [51].

A3C: This asynchronous actor-critic RL algorithm uses multiple parallel agents to learn a policy
for selecting actions [48].

REINFORCE: This is a Monte Carlo policy gradient RL algorithm that learns a policy for
selecting actions by sampling trajectories and estimating the gradient of the expected reward
concerning the policy parameters [52].

DPG: This is a deterministic policy gradient RL algorithm that learns a deterministic policy for
selecting actions by estimating the gradient of the expected reward for the policy parameters [53].
NAF: This is a natural actor-critic RL algorithm that uses a neural network to learn a continuous

action policy by estimating the gradient of the expected reward concerning the policy parameters

[54].
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CEM: This cross-entropy method RL algorithm learns a policy by sampling actions from a
parametrized distribution and adjusting the parameters to maximize the expected reward [55].
ES: This is an evolutionary strategy RL algorithm that learns a policy by evolving the parameters
of a parametrized distribution through selection and mutation [56].

EKF-based RL: This RL algorithm uses an extended Kalman filter to estimate the state-action
value function and learn a policy for selecting actions [57].

Fitted Q-iteration: This batch RL algorithm learns a policy by fitting a model of the action-
value function to a dataset of transitions and using the fitted model to improve the policy
iteratively [58].

GPT-based RL: This RL algorithm uses a transformer-based language model (such as GPT) to

learn a policy for selecting actions [59].

4. Previous Works That Used Rl For The Evrp

In [60], the authors consider the problem of EV routing with constraints on loading capacity,
time window, and vehicle-to-grid (V2G) energy supply (CEVRPTW-D), which not only satisfies
multiple system objectives but also scales efficiently to large problem sizes involving hundreds of
customers and discharge stations. They introduce Quick Route Finder, which leverages RL for
EV routing to address these issues. Using Solomon datasets [61], outcomes from RL are
contrasted to exact formulations based on the mixed-integer linear program (MILP) and genetic
algorithm (GA) metaheuristics. On average, the findings reveal that RL is 24 times quicker than
MILP and GA while being near in quality (within 20%) to the ideal. They are continually
working on creating improved RL models to reduce this optimality gap and manage to change
demands in real-time.

In [62], the authors of this study employed a hyper-heuristic (HH) technique called Hyper-
heuristic Adaptive Simulated Annealing with Reinforcement Learning (HHASARL) suggested. It
incorporates a multi-armed bandit approach and the self-adaptive Simulated Annealing (SA)
metaheuristic algorithm for addressing the CEVRP issue. Due to the restricted number of
charging stations and the trip range of EVs, the EVs must need battery recharging moments in
advance and cut travel times and expenses. The HH implemented improves numerous minimal
best-known solutions and provides the best mean values for various high-dimensional examples
for the proposed benchmark for the IEEE WCCI2020 competition [63]. In future studies, they
want to alter the internal Adjust Station block of the suggested HH with a new way to make
predicting pauses at the charging stations more efficient. In addition, deep RL approaches will
replace the RL block to make it more resilient and evaluate the adaptability and efficiency of
applying these techniques as a heuristic selection mechanism.

In [64], the authors create an RL-based algorithm to manage a community-owned electric
vehicle fleet that offers ride-hailing services to local citizens. The electric vehicle fleet aims to
reduce customer waiting time, power cost, and operational expenses of the cars. A new system

defined by decentralized learning and centralized decision-making is offered to tackle the electric
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vehicle fleet dispatch challenge. The decentralized learning approach enables the individual cars
to share their operational experiences and deep neural network model for state-value function
estimation, which mitigates the curse of dimensionality of state and action domains. The
centralized decision-making framework reduces the vehicle fleet coordination issue into a linear
assignment problem with polynomial time complexity. Numerical research findings reveal that
the suggested technique beats the benchmark algorithms regarding societal cost reduction.

In [65], the authors suggest a RL model to manage power supply and demand uncertainties by
deploying a collection of electric cars to deliver energy to various customers at different places.
An electric vehicle is installed with multiple energy resources (e.g., PV panel, energy storage) that
share power-producing units and storage among different users to power their premises to lower
energy expenses. The performance of the RL model is examined under several configurations of
customers and electric cars, compared to the findings from CPLEX and three heuristic
techniques. The simulation findings reveal that the RL algorithm may cut energy costs up to
22.05%, 22.57%, and 19.33% compared to the genetic algorithm, particle swarm optimization,
and artificial fish swarm algorithm results.

In [66], The authors explore the issue of vehicle routing for an EV fleet with V2G and battery
swapping (SWP). The restrictions encompass loading capacity and delivery time constraints,
intending to reduce the overall delivery costs. They enhance previous methodologies with a
learning agent (LA) that grows to enormous issue sizes, including hundreds of clients, discharge
stations, and battery-switching sites. Using two typical datasets (Solomon and Homberger) and a
postal delivery network from Bangalore, they test LA against a GA and three different baselines.
Their experimental assessment demonstrates that LA is 5.65 times quicker than GA. At the same
time, GA is more accurate than LA. The LA can scale to problem cases with 400+ nodes, but the
GA can only scale up to 200 nodes.

In [67], they offer an efficient Deep RL-based approach for constraint-based routing while
considering electric vehicles” charging policies concurrently. They build a two-layer model to
identify near-optimal solutions and manage various issue cases according to the rewards. The
predefined feasibility time-consuming first layer approximates a series of successive actions in
reality, providing the least time-consuming viable path without re-training for each new issue
occurrence. The second step is to build a charging scheme along the previously defined viable
route. The suggested technique is independent of the road network layout and the electric
vehicles’ kinds. Besides, the convergence of value function in the provided model for EVRP is
explored. The experiment reveals that their technique exceeds the old ones in computing time
with equivalent solution quality. Moreover, the developed model may be immediately utilized to
tackle different issue cases on diverse road networks without re-training processes.

In [68], they study a cost optimization issue for plug-in hybrid electric vehicles (PHEVs) utilized
for service delivery in the context of energy consumption unpredictability. For the cost
optimization issue, an optimum strategy is discovered that dynamically chooses, as the vehicle

drives, the car should be charged at which charging station to reduce the service fuel cost. The
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issue is stated as a Partially Observable Markov Decision Process (POMDP) and is addressed
using RL. The RL charging policy (RLCP), discovered by solving the POMDP, is compared to
two benchmark policies and reveals that RLCP outperforms both. Most crucially, RLCP may be
automatically adjusted to large fluctuations in the vehicle’s energy consumption behavior by
constantly training the RLCP model according to the most current information collected from
the vehicle’s environment.

In [69], utilizing the dataset presented in [10], the authors built an RL framework for solving the
EVRPTW. Although the answers obtained for tiny cases by the suggested method could be
better, they feel it is extremely promising. The reasons are three-fold: foremost, the algorithm
displays remarkable scalability. It can solve cases of gigantic sizes which are unsolvable with any
known approaches. Their investigation demonstrates that the suggested model may swiftly
capture crucial information buried in the graph and deliver reasonably excellent possible
solutions. Though not optimum, such practical methods might be leveraged to enable large-scale
real-time EV operations. Secondly, the suggested model is particularly efficient in solving the
EVRPTW. Numerous graph components, such as customers’ needs, time frames, and the
availability of charging services, might alter immediately. The RL model’s capacity to effectively
solve the issue enables the EV operators to immediately make modifications to face the problems
stemming from the stochastic nature of the EVPRTW. Thirdly, the suggested model may be
expanded to various variations of the EVRPTW. Practitioners can extend the proposed method
by slightly tailoring the masking schemes and the reward function according to their operational
constraints and objectives. It is much easier than adjusting other exact or metaheuristic
algorithms that usually require certain assumptions and domain knowledge. Theoretically, the
suggested solution strategy integrates the embedding graph techniques with the PN design,
enabling the algorithm to synthesize the local and global knowledge to solve the target issue.
They think its applicability is not limited to addressing EVRPTW as it might suit other CO
issues that involve both local and global states of the graph on which it is defined.

In [18], the DS-EVRP was introduced and conceptualized as a Markov Decision Process. The
study presents a solution technique rooted in Safe RL, featuring the subsequent contributions:
firstly, a Value Function Approximation (VFA) utilizing a streamlined state representation to
reduce Q-table dimensions and enhance exploration; secondly, a chance-constrained policy with
dual safety levels aimed at curbing energy consumption and averting failures (specifically, battery
depletion during transit); and thirdly, a training strategy employing tabu search based on
heuristics to enhance exploration. Additionally, a series of computer experiments are conducted
to assess the proposed solution approach and scrutinize its characteristics. Compared to the
deterministic online optimization strategy, their technique has the potential to achieve energy
savings of 4.8% (up to 12%) through anticipatory route planning and charging. The proposed
training approach demonstrates promising efficacy even when dealing with a limited number of

episodes, attributed to the effective utilization of the rollout function and the VFA technique.
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5. Conclusion And Future Work

RL approaches have shown excellent potential for solving several optimization problems,
Including VRP, EVRP, and their variants. We covered several studies that have applied RL to the
EVRP and have demonstrated its effectiveness in finding optimal routes for a fleet of EVs. One
of the main challenges of using RL for EVRP is the complexity of the problem. EVRP involves
many variables and constraints, such as vehicle capacity, battery capacity, charging infrastructure,
and customer demand. Accurately modeling these factors can be challenging, and finding an
optimal solution within a reasonable timeframe can be even more demanding. Another challenge
is dealing with uncertainty. In real-world applications, it can be difficult to predict customer
demand or the availability of charging infrastructure with certainty. RL algorithms based on
deterministic models may need to be better-suited to dealing with these uncertain environments.
Conversely, an inherent advantage of applying RL to EVRP lies in its capacity to dynamically
adapt to evolving conditions. RL algorithms can learn from experience and update decision-
making processes as new information becomes available. This ability allows RL algorithms to
adjust to changing customer demand or new charging infrastructure as they become available.
Another noteworthy opportunity is scalability. RL methods can solve problems with vast
dimensionality and complexity, making it possible to optimize for more significant and realistic
instances of EVRP. Further research is needed to develop more efficient RL algorithms for
solving the EVRP and better understand the following:

Exploration and exploitation trade-off: EVRP involves balancing the exploration of different
routes with the exploitation of the best-known routes. Research could focus on developing RL
algorithms that find a balance between the two by exploring new routes while efficiently
exploiting the best-known routes.

Combining RL with other techniques: Integrating RL with additional optimization
methodologies, such as mathematical programming or evolutionary algorithms, has the potential
to yield more efficient solutions.

Real-time decision-making: EVRP constitutes a dynamic problem, characterized by evolving
customer demands and fluctuating charging infrastructure over time. Research endeavors could
be channeled towards developing real-time RL algorithms capable of making instantaneous
decisions, incorporating the latest information about customer demand and charging
infrastructure.

Incorporating physical constraints: EVRP entails numerous physical constraints such as battery
capacity and vehicle range. Employing RL to integrate these constraints into the decision-making
process could facilitate discovering solutions that align more closely with reality.

Multi-agent systems: Another avenue for exploration lies in multi-agent RL algorithms, wherein
distinct agents govern multiple vehicles and charging stations, necessitating coordinated actions.
This approach promises increased realism and the potential to derive more efficient solutions.
Real-world deployment: Despite the strides taken in simulating and testing RL-based EVRP, a

critical imperative exists for further research that centers on the practical deployment of these

4187
Tob Regul Sci. ™ 2023;9(1): 4175-4192



[1]

[2]

3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

Abdelkader Kaddour et. al
A Review About Electric Vehicle Routing Problem with Reinforcement Learning

algorithms in real-world contexts. Such endeavors should encompass the evaluation of
performance and scalability, grounded in actual data, to engender a comprehensive

understanding of their viability and effectiveness.
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