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Abstract

Both the plasma and the cytosol contain high concentrations of taurine, a free amino acid. The kidney
is essential in regulating taurine levels. The amino acid shows a peculiar distribution along the nephron,
as shown by immunohistochemical analysis. In a number of in vitro and in vivo models, taurine has been
shown to have antioxidant properties. It protects glomerular mesangial cells and renal tubular epithelial
cells from lipid peroxidation when those cells are cultured in high glucose or low oxygen environments.
Animal models of renal illness, such as refractory nephrotic syndrome and diabetic nephropathy,
respond favourably to dietary taurine supplementation. Taurine's antioxidant activity is the mechanism
by which it exerts its positive effects. Subtotal ablative nephrectomy does not ameliorate acute ischemia
or nephrotoxic renal insufficiency or chronic renal failure. More research on taurine's role as a
renoprotective drug in experimental renal disease is necessary to completely elucidate its breadth and
mechanism of action. The potential of thisamino acid as an auxiliary treatment for diabetic nephropathy
and progressive glomerulonephritis requires more clinical investigation.
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Introduction

Taurine (2-aminoethanesulfonic acid) is a ubiquitous amino acid in the cells of nearly all body organs.
It is present as a free molecule and is not incorporated into structural protein (Chesney, 1985;
Huxtable, 1992; Sturman, 1993). The cytosolic concentration of taurine is 1-5 mM depending on the

particular type of tissue (Chesney, 1985).
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The transmembrane gradient between the plasma and cell can exceed 100, a difference that is
maintained by an epithelial Na +- C1- coupled transporter (Huxtable, 1992). Taurine is normally an
abundant nutrient in the diet and it is readily absorbed from the gastrointestinal tract (Jacobsen et al.,
1968). It is also synthesized from the metabolic precursor, cysteine, via the enzyme, cysteinesulfinic
acid decarboxylase (Jacobsen et al., 1968). Although the hepatic biosynthetic capacity for taurine is
limited in humans, the effects of dietary taurine deficiency are ameliorated by decreased conjugation
of bile acids with taurine and a greater proportion of bile conjugation with glycine (Sturman, 1993).
Therefore, taurine is considered a conditionally essential amino acid and serum and tissue levels of the
amino acid can be compromised in newborn infants and patients receiving parenteral alimentation
with taurine-free solutions for prolonged periods (Gaull, 1989; Zelikovic et al., 1990). Under most
conditions, the adequacy of total body taurine balance is determine by the difference between dietary
intake and urinary excretion of the amino acid (Chesney, 1985).

The kidney plays a crucial role in regulating body stores of taurine. It possesses the electrogenic Na+-
C1 - coupled co-transporter in the proximal tubule brush border membrane (Zelikovic et al., 1989).
This membrane protein carries out secondary active transport of taurine and other/3-amino acids into
the cytosol, taking advantage of the sodium gradient generated by the Na+-K + ATPase pump that is
present in the basolateral membrane. The activity of this carrier, the Vmax of the transporter, is directly
modulated by nutritional availability of taurine. When there is excessive taurine in the diet,
reabsorption is suppressed; in contrast, under conditions of taurine deficiency, the activity of the
transporter is upregulated (Chesney et al., 1985). Relative deficiency of this transporter accounts for
the amino aciduria and hypertaurinuria observed in newborn infants (Chesney et al., 1986).

Taurine serves many functions including bile acid conjugation, modulation of neurotransmission,
stabilization of the retinal membrane and osmoregulation (Chesney, 1985). The accumulation of
taurine as a compatible organic osmolyte in cerebral and renal cells under conditions of
hyperosmolality is accomplished to preserve cell volume (Trachtman et al., 1988, 1990; Nakanishi et
al., 1991). Increased cytosolic taurine content minimizes changes in intracellular ionic strength and
perturbations in protein structure and function. These cells enhance the activity of the Na+-C1 -
coupled cotransporter in response to increases in ambient osmolality. This adaptation has been
demonstrated in cerebral cells during chronic hypernatremia and hyperglycemia and in kidney cells
during antidiuresis. Cultured MDCK (Madin-Darby canine kidney) cells, analogues of the distal
tubule, display osmotically-regulated taurine uptake across the basolateral membrane (Jones et al.,
1990; Uchida et al., 1991; Jones et al., 1995). These aspects of taurine handling by the kidney,
including response to dietary changes and osmolal disturbances, have been well summarized in a recent

report (Jones et al., 1993).
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Taurine and oxidant injury

There is considerable information gathered from in vitro reaction systems that taurine is an ineffective
antioxidant that is unable to inactivate or scavenge common oxidant species such as the hydroxyl or
superoxide radical. It is much less potent than hypotaurine and other sulfur-containing molecules at
disrupting the initiation or propagation of oxidation processes (Arouma et al., 1988; Tadolini et al.,
1995). Despite the disappointing results that have been collected in chemical studies, there is abundant
evidence that taurine functions as an antioxidant in a variety of in vivo biological systems. Taurine
reacts with HOCI, a potent oxidizing agent generated by activated neutrophils, to form the less toxic
product, taurine chloramine (Thomas et al., 1985; Cantin, 1994). This reaction retards damage to
ocular surfaces exposed to HOC1 (Nakamori et al., 1993). Taurine protects cultured lymphoblastoid
cells against iron-ascorbate or retinol-induced oxidant damage and enhances cell viability
(PasantesMorales et al., 1984; Pasantes-Morales et al., 1985). Taurine supplementation protects the
lung from oxidant-induced damage following exposure to ozone or nitrogen dioxide (Banks et al.,
1990; Gordon et al., 1986). In the case of ozone, the pulmonary injury is caused by increased
expression of inducible nitric oxide synthase in lung macrophages and increased nitric oxide
production. Taurine, via the formation of taurine chloramine, inhibits inducible nitric oxide synthase
(iNOS) and prevents lung damage (Cantin, 1994; SchullerLevis et al., 1994). Taurine alone or in
combination with niacin reduces pulmonary fibrosis following intratracheal installation of the
oxidants, amiodarone (Wang et al., 1992a) or bleomycin (Wang et al., 1992b). Finally, taurine
attenuates adriamycin-induced cardiotoxicity in perfused chick hearts by decreasing myocardial lipid
peroxidation (Hamaguchi et al., 1989).

Oxidant injury and the kidney Reactive oxygen molecules are involved in progressive organ damage
in several experimental models of kidney disease. In ischemic acute renal failure caused by bilateral
renal artery clamping, intra-renal infusion of free radical scavengers such as catalase and superoxide
dismutase lessens the reperfusion injury following restoration of renal blood flow (Paller et al., 1984).
The hydroxyl radical contributes to the nephrotoxicity of the aminoglycoside antibiotic, gentamicin
(Walker et al., 1988).

Oxygen free radicals are implicated in the pathogenesis of the glomerulopathies induced by puromycin
aminonucleoside and adriamycin. Administration of allopurinol, catalase and the iron chelating agent,
desferrioxamine, reduces the severity of acute phase puromycin aminonucleoside-induced injury
(Diamond et al., 1986; Thakur et al., 1988). Provision of tungsten, an inhibitor of renal xanthine
oxidase/xanthine dehydrogenase, alleviates adriamycin nephropathy (Ginveri et al., 1990).
Administration of vitamin E reduces proteinuria, maintains tissue levels of sulthydryl proteins and
lessens structural injury in nephrotoxic serum nephritis (Endreffy et al., 1991). In diabetic
nephropathy, hyperglycemia directly promotes lipid peroxidation of cell membranes and causes renal

cell injury (Baynes, 1991). Glycosylation of proteins initiates a series of autoxidative chemical reactions
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resulting in the accumulation of advanced glycosylation end products (AGEs) in the kidney. These
compounds contribute to the development of diabetic nephropathy (Baynes, 1991).

Taurine as a renal antioxidant: In vitro studies

Most of the evidence that taurine is an antioxidant in cultured renal cells is derived from work
examining the direct effects of hypoxia or nephrotoxic agents. Addition of taurine (0.1-1.0raM) to
renal transplant preservative solutions prolonged the survival and enhanced the viability of LLC-PK1
cell monolayers that were exposed to hypoxic conditions followed by reoxygenation (Wingenfeld et
al., 1994). The protective effect was more apparent with the University of Wisconsin compared to the
Euro-Collins perfusion solution. In contrast, Heyman et al. (1992) and Baines et al. (1990) failed to
demonstrate any protective effect of adding taurine to the perfusion solution on the extent of
medullary tubule damage in the isolated perfused rat kidney preparation. However, glycine was able
to reduce the degree of morphologic injury to medullary tubules. Similarly, glyeine but not taurine
attenuated lethal renal cell injury, assayed by LDH and K + release, in response to increases in cytosolic
calcium in the two cultured tubular epithelial cell lines, MDCK and LLC-PK1 (Weinberg et al.,
1991a,b). Exposure of cultured glomerular mesangial cells to high glucose concentration (28 raM)
increases lipid peroxidation assessed by malondialdehyde or conjugated diene content (Trachtman et
al., 1993a). An elevated ambient glucose also inhibits mesangial cell proliferation (Trachtman et al.,
1994). Addition of taurine (500/-M) to the ambient medium prevented these changes (Trachtman et
al., 1993a, 1994). The protection against high glucose-induced oxidant injury was reproduced by the

addition of vitamin E, consistent with a direct antioxidant effect of the amino acid (Trachtman, 1994).

Taurine as a renal antioxidant: In vivo studies

Localization of taurine within the kidney A prerequisite for understanding the potential function of
taurine as a renal antioxidant is clarification of the distribution of the amino acid within the different
structural components of the nephron. In the 1980's, a technique was developed for making antibodies
to amino acids by conjugating them with glutaraldehyde to proteins such as bovine serum albumin or
polylysine (Storm-Mathisen et al., 1983). This advance enabled the localization of amino acids to be
determined in a variety of tissues. Using highly specific polyclonal antibodies to taurine that were
preabsorbed with structurally similar amino acids, several investigators have examined the localization
of taurine within the kidney. Trachtman et al. (1993b) incubated normal rat kidney tissue with an
antibody raised to a taurine-glutaraldehyde-BSA conjugate and visualized the amino acid by the biotin-
avidin-peroxidase-diaminobenzidine method. They found that the staining intensity for taurine was
most pronounced in medullary tubules with minimal secondary staining in proximal tubules and the
glomeruli. These findings were independently confirmed by two other groups of investigators. Amiry-
Moghaddam et al. (1994) used peroxidaseantiperoxidase and immunogold staining procedures to

demonstrate localization of taurine primarily in collecting duct cells, proximal convoluted and straight
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tubules and thin descending limbs of Henle. Finally, Ma et al. (1994) utilized an immunoperoxidase
method to verify that taurine reactivity was most prominent in glomeruli and the collecting tubules.
The heterogeneous staining pattern of taurine within renal cells under conditions of stable dietary
intake and urinary osmolality argues in favor of a specific role for this amino acid in the preservation
of renal structure and function under normal conditions and in disease states.

Acute and chronic renal failure In rats with acute renal failure induced by bilateral nephrectomy, there
is a rise in the plasma taurine concentration; in addition, hepatic taurine content is increased while in
skeletal muscle, heart, and brain tissue, the amino acid level is unchanged (Michalk et al., 1983). There
are no comparable data about the effect of acute renal failure on plasma or tissue levels of taurine.

In rats with chronic renal failure, the plasma taurine concentration and cerebral content of the amino
acid are elevated (Michalk et al., 1983). Patients with chronic renal failure manifest a similar increase
in plasma taurine concentration. This change has been documented early in the course of this disease,
prior to the onset of protein malnutrition (Ceballos et al., 1990). In patients on hemodialysis, the
elevated plasma taurine concentration was normalized by the dialysis treatment (Jung et al., 1991).
However, under these circumstances, there was evidence of disparate taurine levels in circulating blood
cells. Thus, while taurine concentration was elevated in erythrocytes and normal in granulocytes and
lymphocytes, it was lower than normal in platelets (Jung et al., 1991). Skeletal muscle taurine content
is diminished compared to normal in patients with chronic renal failure (Bergstrom et al., 1989). The
observation that the taurine level in muscle remains low up to 3 months post-renal transplantation is
additional evidence in support of body taurine depletion in this condition (Perfumo et al., 1994).
Despite the abundant evidence that reactive oxygen molecules contribute to acute and chronic renal
failure, we have failed to demonstrate any beneficial effect of taurine under these circumstances. Thus,
in rats with bilateral renal ischemia for 30-60 minutes, pre-treatment with a 1% taurine solution for
2 weeks did not reduce the peak serum creatinine concentration observed after 24 hours or hasten
recovery of renal function (Trachtman, unpublished observation). In addition, this regimen failed to
ameliorate the severity of gentamicin nephrotoxicity induced by injection of the aminoglycoside
antibiotic (100mg/kg/day) for 7 days (Trachtman, unpublished observation). Finally, this dietary
treatment had no discernible impact on mortality or the long term renal outcome in rats subjected to
5/6 nephrectomy and observed for 8- 10 months (Trachtman et al., 1986).

Nephrotic syndrome Puromycin aminonucleoside (PAN) is an epithelial cell toxin and administration
of a single dose of this agent to experimental animals causes a lesion that resembles minimal change
nephrotic syndrome (Diamond et al., 1986). Venkatesan et al. (1993, 1994) examined rats given PAN,
100mg/kg intraperitoneally, and reported that provision of taurine, in a daily dose of 500mg for 10
days, reduced total proteinuria, albuminuria and urinary excretion of N-acetyl-fl-D-glucosaminidase
by nearly 50%. This treatment also ameliorated the hyperlipidemia observed in these animals. The

effects of taurine were associated with restoration of renal content of glutathione, total thiols, ascorbic
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acid and vitamin E towards the levels observed in normal rats. These same investigators have studied
the effect of taurine on the nephropathy induced by another epithelial cell toxin, adriamycin.
Diabetic nephropathy

Taurine depletion has been noted in nerve tissue isolated from rats with streptozocin (STZ)-induced
diabetes for 21 days (Stevens et al., 1993). In 39 patients with insulin-dependent diabetes mellitus,
plasma and platelet taurine levels were reduced compared to normal subjects; both values were
normalized by taurine supplementation (1.5 g/day) for 90 days (Franconi et al., 1995). In rats with
STZ-diabetes, Goodman and Shihabi studied the effect of giving taurine as 0.1% drinking water for
8 weeks (Goodman et al., 1990). Although there was no change in the severity of hyperglycemia or
glycosuria, the hypertriglyceridemia and hypercholesterolemia seen in the untreated diabetic animals
was reduced by taurine treatment. The duration of the study was not sufficient to elucidate the effect
of this maneuver on renal function and structure. We recently reported the effects of long-term dietary
taurine supplementation (1% drinking water) for 1 year to rats with STZ-diabetes (Trachtman et al.,
1995). This treatment did not ameliorate hyperglycemia. However, from 6 months on, there was a
50% reduction in proteinuria and albuminuria. Although the total kidney and estimated single
nephron glomerular filtration rate remained elevated in taurine-treated rats, there was a reversal of
glomerular hypertrophy and prevention of glomerulosclerosis and tubulointerstitial fibrosis. These
changes occurred in association with reduced serum free iron concentration and lowered renal cortical
malondialdehyde content. Finally, taurine supplementation reduced the content of pentosidine and
total fluorescence, advanced glycosylation end products, in collagen extracted from rat skin. These
changes were paralleled by increased immunohistochemical staining intensity for taurine in glomeruli
and medullary tubules (Trachtman et al., 1993b). In contrast to the beneficial effects of taurine on the
course of experimental diabetic nephropathy, administration of a diet that was moderately enriched in
vitamin E exacerbated the renal lesion in the diabetic rats (Trachtman et al., 1995). The effect of

taurine on the course of diabetic nephropathy has not been examined in humans.

Challenges for the future

There is much additional work that is needed to gain a better understanding of the role of taurine in
the modulation of renal disease. The mechanism of action of this amino acid requires further
clarification. The contribution of taurine acting as an organic osmolyte and the impact of possible
changes in the cytosolic content of molecules such as myo-inositol should be addressed in the
development of diabetic nephropathy. The interaction of taurine with various intracellular signalling
systems and peptide growth factors should be addressed because these are likely to contribute to the
biological effects of the amino acid. It is conceivable that the beneficial effect of taurine, acting as a
antioxidant, is based upon its ability to regulate inducible or endothelial nitric oxide synthase, alter
nitric oxide synthesis, or inhibit the accumulation of oxidant NO products. Alternatively, taurine may

act in combination with NF-zB, an oxidant sensitive transcription factor, or directly modulate oxidant-
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sensitive transcription of extracellular matrix genes by virtue of its capacity to alter redox sensitive
promoter regions. Finally, like vitamin E, taurine may inhibit activation of protein kinase C and reduce
synthesis of extracellular matrix proteins (Kunisaki, 1994). This mechanism may be especially
important in the pathogenesis of diabetic nephropathy. All of these effects are amenable to direct study
using a combination of in vitro and in vivo systems. The optimal taurine dosage needed to achieve a
renoprotective effect and the timing of initiation of amino acid supplementation should be
investigated in the relevant disease models. It is necessary to ascertain which particular diseases states
that are characterized by oxidant-mediated injury are amenable to modification by taurine treatment.
The features that define responsiveness to taurine need to be determined. For example, it is unclear
why taurine is ineffective in aminoglycoside nephrotoxicity or acute ischemic renal failure while it
exerts a beneficial effect in puromycin aminonucleoside nephropathy or diabetic kidney disease.
Differences between chronic versus acute disease states may be critical in defining the efficacy of
taurine treatment. Finally, consideration should be given to the performance of clinical trials to
ascertain whether taurine supplementation can attenuate the severity of refractory nephrotic syndrome

or delay the progression of incipient diabetic nephropathy.

Conclusion

Much evidence has developed over the past decade suggesting that taurine improves kidney function
and structure in a wide range of disease situations. Most of the evidence indicates that taurine is
protecting renal cells by functioning as an antioxidant. More research is needed to understand whether
or not taurine has therapeutic potential (diabetic nephropathy vs. 5/6 nephrectomy). Furthermore, it
is evident that taurine does not restore renal function. The evidence suggests instead that it acts in a
generic fashion to slow the decline of kidney function. Its mode of action is unique, meaning it may
work in tandem with other interventions like dietary protein restriction and angiotensin converting
enzyme inhibitors to slow the progression of kidney impairment. Existing evidence suggests that
taurine may be useful as an additional treatment to reduce kidney injury in a wide range of renal
disorders, but more research is needed.

No Conflict of interest.
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