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Abstract:

This research paper presents developing and implementing an Intelligent Grid Interfaced
Solar Water Pumping System for Sustainable Agriculture, incorporating an Adaptive
Neuro-Fuzzy Inference System (ANFIS) based Maximum Power Point Tracking (MPPT)
algorithm. The primary objective is to enhance agricultural practices' energy efficiency and
sustainability by efficiently harnessing solar energy for water-pumping applications. The
ANFIS current-voltage controlled MPPT algorithm demonstrates remarkable adaptability
and accuracy in tracking the solar photovoltaic array's maximum power point, optimizing
energy extraction. Integration with the power grid allows surplus solar energy injection,
reducing dependency on conventional energy sources and promoting eco-friendly
agricultural practices. Successful implementation highlights its potential as a viable and
sustainable solution to address farmers' energy and water scarcity challenges,
contributing to rural development and environmental conservation.
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Introduction

Access to reliable and sustainable water supply is crucial for agricultural activities, especially in
rural and remote areas where electricity is scarce or unreliable. In recent years, a growing interest
has been in utilizing renewable energy sources to power water pumping systems for sustainable
agriculture. One such innovative solution is designing and implementing an intelligent grid-
interfaced solar water pumping system [1].

The intelligent grid-interfaced solar water pumping system combines the benefits of solar
photovoltaic (SPV) technology with intelligent grid integration to provide a cost-effective and
efficient solution for agricultural water pumping. This system aims to address the challenges

farmers face in remote areas by harnessing the sun's power and optimizing energy usage [2].
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The proposed research paper focuses on designing and implementing this intelligent grid-

interfaced solar water pumping system for sustainable agriculture. It aims to explore the various
components, control strategies, and integration techniques involved in the system. The research
paper also evaluates this system's economic and environmental advantages compared to traditional
diesel generators.

The system can efficiently manage power flow, optimize performance, and ensure reliable
water supply for agricultural needs by utilizing intelligent grid interfacing. Integrating solar energy
reduces fossil fuel dependency, resulting in reduced carbon emissions and a more sustainable
approach to water pumping in agriculture.

The research paper draws insights from existing studies [1-4] and proposes a comprehensive
analysis of the intelligent grid-interfaced solar water pumping system. It aims to contribute to the
existing body of knowledge by providing valuable insights into the design, implementation, and
benefits of this system for sustainable agriculture. Overall, the research paper aims to serve as a
valuable resource for researchers, engineers, policymakers, and farmers interested in sustainable
water supply solutions for agriculture. It highlights the potential of intelligent grid-interfaced solar
water pumping systems to revolutionize agricultural practices, improve productivity, and

contribute to a more sustainable future.

Proposed System Design

A solar photovoltaic (PV) array, an induction motor drive, a voltage source inverter (VSI), a
voltage source converter (VSC), and a boost converter for Maximum Power Point Tracking
(MPPT) are the components that make up the suggested system. The configuration of the system

that is being considered is depicted in Figure 1.

230V
AC
Grid
Voltage

VSC
Pulses

S to Sy

Converter

Fig. 1.  Schematic Representation of the Overall System Model.

I1.1 Modelling of PV array

PV is an area of technology and research related to devices that directly convert sunlight into
electricity. Solar cells are an essential element of PV technology. Solar cells are made of
semiconductor materials, such as silicon. One of the most valuable properties of semiconductors is

that their conductivity can be easily modified by introducing a mixture into the crystal lattice.
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This solar cell works because when a photon of light falls on the cell, the photon transfers energy

to a charge carrier. The electric field across the junction separates the light-generated positive

charge carriers (holes) from their negative counterparts (electrons). This way, an electric current is

extracted after the circuit is closed on an external load [5]. The Single diode circuit model is

among the most common models to predict PV cell energy production [6-8]. The parameters of

the solar panels used in this system are presented in Table I.
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Fig.2.  Equivalent circuit of a PV cell.

TABLE 1. ELECTRICAL CHARACTERISTICS OF THE PV MODULE.

Solar Photovoltaic Module

DESCRIPTION RATING
Cell 60
Open circuit voltage (Voc) 357V
Short circuit current (Isc) 7.99 A
Voltage at Maximum Power (Vmp) 287V
Current at Maximum Power (Imp) 732 A
Solar Photovoltaic Array
Maximum power (Pmax) 2.3 KW
Voltage, Vmpp 3157V
current, Impp 7.32A
Modules number at series, Ns 11

Modules number at parallel, Np

1

The I-V and P-V characteristics against different radiation levels through simulation are shown

in Fig. 3:
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Array type: User-defined;

11 series modules; 1 parallel strings
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Fig.3. I-V and P-V characteristics of PV array.

I1.2 Design of Boost DC-DC Converter

SPV matrix voltage MPP, Vpv= Vmpp= 315.7 V, is increased with VSI voltage DC bus, Vdc=

400 V. These present a minimal working ratio, D, which outcomes in an advantage mentioned in

section earlier. Table II summarises the estimation of inductance, L, and capacitance, C, where

fsw is the boost converter's switch frequency, IL is the inductor's current, and IL is the ripple

content at the inductor's current inductance [9,10].

TABLE 2. BOOST DC-DC CONVERTER PARAMETERS.

Parameter Value
D 0.23
L 3 mH
C 500 uF
IL 475 A
AIL 10% of IL
fsw 10 kHz

I1.3 Induction Motor

In the (a, f) reference frame, the dynamic behavior of a three-phase induction motor appears

as follows [11]:

The stator voltages:
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The rotor voltages:

d
O=Rrlrq+ ‘f;[a +omér g
2
_ dér
O—Rr | rﬂ+ dt +a)m¢ra
The stator flux:
Psa=Lslsq+Mlrq
¢Sﬂ=lesﬂ+M|rﬂ
3
The rotor flux:
dra=Lrlrg+Mlsy 4
¢rﬂ:Lr|rﬂ+Mlsﬁ
The electromagnetic torque:
3
TGZEX p( |sﬂ¢sa—|sa¢sﬂ) 5

Where, La, I8, L,a, and I are the (a-) frame stator and rotor currents; M is the mutual inductor;
L, L,, R, and R, are the stator and rotor inductors and resistors.

I1.4 Centrifugal Pump

Equation (6) demonstrates that the centrifugal pump load torque (Tpump), is related to the
square of the induction motor speed (Q) [12].

2
Tpump = K pump®?

Where, Ky is the centrifugal pump's constant.
III.  Control Of The Proposed System

The diagram in Figure 4 illustrates the management of the system. The system receives power
from two sources: the SPV array and the utility grid supply. The control mechanism is specifically
designed to intelligently distribute and utilize the available power from both sources. Moreover,
the system is engineered to adapt to variations in radiation and environmental conditions,

ensuring its resilience.
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Fig. 4. The proposed intelligent solar water pumping system management.
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The system operates in three different modes to effectively utilize solar power and grid supply

while maintaining the rated pump discharge.

Mode I: In this mode, only solar power is available, and the grid supply is absent. If the
available solar power exceeds the pump's rated power, the pump runs at its maximum capacity. In
this case, the Maximum Power Point Tracking (MPPT) algorithm is not active. However, if the
available solar power is less than the pump's rated power, the reference frequency for the pump is
estimated based on the maximum available solar power.

Mode II: This mode operates when there is no solar power available, such as during the night
or low solar radiation. The system is then powered solely by the single-phase grid supply,
maintaining the rated speed and discharge. To improve the power quality from the grid, a single-
phase two-level voltage source converter (VSC) is employed.

Mode III: During the daytime when there is sufficient solar insolation and the grid supply is
available, the system combines power from both sources to meet the required pump discharge.
The output power from the solar photovoltaic (SPV) array varies throughout the day due to
changes in weather, sun position, panel orientation, and shadows from nearby objects. The excess
power, if any, can be obtained from the grid. Additionally, a front-end converter is used to ensure

that the total harmonic distortion (THD) of the AC mains remains within acceptable limits.

IV.  MPPT Algorithm

Figure 5 depicts the proposed ANFIS (Adaptive Neuro-Fuzzy Inference System) power-voltage
controlled MPPT (Maximum Power Point Tracking) controllers. In this MPPT configuration, a
replicated model of the solar PV system is constructed using ANFIS. The ANFIS is trained with
two inputs, namely irradiance and temperature, and a single output, which represents power
under different irradiance and temperature conditions. The power reference obtained from the
ANFIS system is then compared with the actual PV power. Any difference, or error power, is
processed through a proportional-integral controller to generate a reference voltage for the
subsequent stage.

In the next stage, the reference voltage is compared with the actual PV voltage, resulting in an
error voltage. This error voltage is further processed through another proportional-integral
controller, which ultimately provides the duty cycle for the Pulse Width Modulation (PWM)
generator. The PWM generator generates pulses for the DC-DC boost converter, ensuring the

maximum power extraction from the solar PV array.
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Fig 5. The ANFIS-based power-current controlled Maximum Power Point Tracking (MPPT)

system.
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V. Induction Motor Control

Due to the fact that the pump utilizes a centrifugal principle for operation, there is a correlation between the speed
of the IMD and the amount of water that is expelled from the pump. The volts per Hertz (V/f) control approach is
utilized in order to maintain a constant speed for the IMD.

To avoid dangerously high starting currents, the IMD is started with a procedure known as a soft start. The
control logic shown in Figure 2, which is used to determine the frequency reference, is shown below. The proposed
system always runs at its rated speed while it is under normal conditions, except for situations in which the grid is not
present and the maximum power that is available is less than the IMD's rated power.

The voltage of the DC link is kept under control by a proportional-integral (PI) controller. The error that was
produced by the PI controller is utilized in the calculation of the reference current (4%, which is then compared with
the supply current that was sensed. To generate switching pulses for the front-end converter, the output of this
comparison is sent into a hysteresis current controller.

In addition to that, the output of the PI controller is sent into a proportional controller as well. The output of the

*
proportional controller is subtracted from the feed-forward term w, , which is obtained from the power output of the

PV modules, and the result is denoted by F* The value of F*is then sent to the V/f block, which is responsible for
determining the switching pulses for the VSI (Voltage Source Inverter).

The expression for the speed term that corresponds to the PV power is as follows:
o =K pump 3\/ Ppv

The reference speed of the IMD, denoted by the notation F*, is determined by applying the following formula:

*
* a)l—a)p

@ 2

VI.  Simulation And Results
The System's Performance While Running in Mode I

Figures 6-9 depict the performance of the system in Mode I, where only solar PV drives the
pump. The steady-state characteristics of the system are shown in these figures. Figure 6 shows
that VPV and IPV are maintained at their MPP values. Additionally, the DC link is maintained at
the reference voltage of 400V, as shown in Figure 8. The induction motor currents maintain
sinusoidal waveshape, and the torque and speed of the motor are constant at the value
corresponding to the radiation of 1000 W/m2, as shown in Figure 7. Figure 9 illustrates that the

grid supply is absent.
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Fig .6. The simulation results of mode I of output voltage, curren, and output power of the PV.
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Fig.7.The simulation results of induction motor currents, the torque, and speed of the motor in
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Fig.8. DC Link voltage in mode 1.
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Fig.9. Grid side voltage and current waveforms of mode I.

2. The System's Performance While Running in Mode II
Figures 10-13 display the performance of the system operating in mode II, where the grid
supply solely powers the drive. The input current remains in phase with the input voltage,

ensuring the total harmonic distortion remains below 5%.
The DC link voltage is consistently maintained at the reference value of 400V, as depicted in
Figure 12. Additionally, Figure 13 illustrates the grid's capability to cover the power demands,

enabling the grid current to reach 15 amperes for effectively powering the motor.
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Fig.10. The simulation results of mode II of output voltage, curren, and output power of the PV.
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Fig.11. The simulation results of induction motor cutresits, the torque, and speed of the motor in

mode II.
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Fig.13. Grid side voltage and current waveforms of mode II.

3. The System's Performance While Running in Mode III

The system's dynamic performance in mode III is illustrated in Figures 14-17. The figures
show the variation of the system indices with a decrease in radiation from 500 W/m? to 0 W/m?,
then a step change in radiation from 0 W/m? to 300 W/m?, with available the grid supply.

The Ipv and Ppv decrease with the decrease in radiation as shown in Fig. 14. However, the
induction motor currents, speed of the motor, and torque are maintained despite the decrease in
radiation due to the presence of the grid utility in the service space. The grid covers the missing
energy from the PV panels, as shown in Figures 15 and 17. The DC link is maintained at the
reference voltage of 400V, as shown in Figure 16. Figure 17 illustrates that the grid current

changes inversely with the solar panel current, increasing in the absence of energy extracted from
the solar panels.
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Fig.14. The simulation results of mode III of output voltage, curren, and output power of the PV.
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Fig.15.The simulation results of induction motor currents, the torque, and speed of the motor in
mode II1.
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Fig.16. The DC Link voltage in mode III.
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Fig.17. Grid side voltage and current waveforms of mode II1.
VII. Conclusion
This research paper comprehensively investigates an innovative Intelligent Grid Interfaced
Solar Water Pumping System for Sustainable Agriculture, utilizing an ANFIS-based MPPT
algorithm. The study aims to enhance energy efficiency by harnessing solar energy for water

pumping. The ANFIS algorithm demonstrated adaptability and accuracy in tracking the solar
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array's maximum power point, increasing energy utilization. Integration with the power grid
allows surplus energy injection, promoting sustainability. Successful implementation highlights its
potential as a viable solution for agriculture's energy and water scarcity challenges, fostering eco-
friendly practices and rural development. The research provides valuable insights for integrating
ANFIS-based MPPT into various renewable energy systems, paving the way for a greener and

more sustainable future.
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