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Abstract:

The present article proposes a novel hybrid intelligent diagnosis solution for grid connected PV installations based on
Co Active Neuro Inference System (CANFIS) algorithm. The considered faults are open circuit fault, short circuit
fault, ground fault and by-pass diodes fault in PV array. This solution has been tested and validated on a 9.54 kWp
grid connected PV installation. The performances of the proposed method has been tested by residual criteria citing:
Mean square error (MSE), Root mean square error (RMSE), Mean absolute percentage error (MAPE), Mean absolute
deviation (MAD) and coefficient of correlation (R?) which display 4.65 % and 0.99. The isolation process has been
performed using the percentage linear scatter plot of both electrical data (Impp, Vmpp) in the goal to obtain the global
diagnosis of PV system. The main novelty of this work is the fact that the proposed diagnosis solution takes into
account a particular class of faults which has been until now discarded because of the difficulty of its isolation ; these
are faults linked to the bypass diode.

Keywords: Grid connected PV systems, faults classification, faults diagnosis, Artificial Intelligence, CANFIS

algorithm.
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Introduction
At the present time, the diagnosis of photovoltaic systems is the current topic that allows to maintain

performance from the point of view of the PV arrays’ lifetime as well as to minimize human interventions with all that
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this generates time. This topic is very intervening for several works with different methods, the interested readers will

be able to refer to [1, 40].

In the precedent works relative to [20-22], the diagnosis of PV systems was based on different types of ANNS,

where the results were successfully proven for open circuit fault as well as short circuit faults in PV array. In the

perspective of the present work, the process has been enlarged by the adding of ground fault in addition to by-pass

diodes fault in PV array that the researchers have found difficulties to treat it. Table 1 below represents computational

intelligence for PV system diagnosis mentioned with meticulous details from point of view of advantages and

drawbacks for different references.

Table 1

Advantages and limitations of PV systems’ fault diagnosis (Kara Mostefa Khelil et al., 2022).

References Intelligent Advantages Limitations
methods
Only two parameters are used in fault | In presence of shading case the
detection (Irradiance and PV output | accuracy decreases to 96.2%
power).
The best accuracy is from the MLP
(Hussain et al.,
e MLP containing 3 hidden layers equals to
2020)
99.1%.
Four different methodologies of ANNs
have been used with different
architectures.
Comparative study between ANN and | Four parameters PV
PNN in term of diagnosis of PV system. | temperature, solar irradiation,
(Garoudja et e ANN Can diagnose many faults in presence of | Impp, Vmpp) in the same
al., 2017) e PNN noise. intelligent bloc.
Excellent level of accuracy with 100%. Not able to diagnose by-pass
diode faults.
Two ANNGs are used in conjunction with | Neglected confusion in current
a combinational logic block. and voltage classification.
(Kara Mostefa
Based on experimental testing conditions,
Khelil et al., e ANNs
the diagnosis success rate is 98.6%.
2020)
Simplicity and rapidity for both detection
and localization.
(Kara Mostefa MLD The impact of the ANNS’ choice on PV | Very careless misclassification
J
Khelil et al., systems diagnosis quality is addressed. voltage.
» RBENN
2021)
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° PNN | The efficiency of an ANNs based
GRNN intelligent  diagnosis  algorithm s
analysed.

Five ANNs are considered: BPNN, Two
RBF, PNN and GRNN.

The comparison takes into account the
accuracy, the specificity, the sensitivity
and the rapidity.

Response time of each algorithm has been
taken in consideration.

The results identify the PNN as the best
candidate for the studied diagnosis task
with 100% in all key statistical concept

and the fastest in response time.

Two climatic parameters and two | Some samples in

(Kara Mostefa
electrical parameters have been used misclassification between two PV
Khelil et al., | Bayesian NN
Short response time diagnosis modules short circuited and one
2022)
Excellent accuracy with 99.88% PV module short circuit.
Reach demonstration with | Doesn’t take in consideration the
documentation about Fault detection and | response time for each kind of
(Li et al., diagnosis of PV systems. these methods.
e ANN
2021) Statistical concept in fault detection in
PV systems using different type of Al
especially various cases of ANN.
High accuracy of 98.70%. Confusion classification between:
Operates in online fault. Open circuit and shading with
Less computational time. bypass diode normal.
(Madeti et al., Line-line and shading with
o KNN
2018) inverted bypass diode.

Shading with faulted bypass
diode and shading with bypass

diode normal.
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Developed and comparative study | Fuzzy logic method requires a lot
between ANN and Fuzzy Logic | of mathematical expressions.
(Mamdani and Sugeno).
Two attributes as input data (voltage and
(Dhimish et e ANN
Power) Ratio.
al., 2018)  p  Fuzzy Logic
Easy and fast for both machine learning
in fault detection of PV systems.
High detection accuracy especially for
ANN.
Capability to detect hot spot in PV | The accuracy of the algorithm
system in addition to faulty PV modules | depends on the instrumentation
using Fuzzy Logic. used in the PV plants.
Minimum detection accuracy equals to | Not able to detect fault occurring
(Dhimish et
e Fuzzy Logic | 98.8% and maximum equals to 99.31%. | in the bypass diode.
al., 2017)
Easy to use in fault detection and
diagnosis of PV systems.
The algorithm can be used with wide
range of PV installation.
Two algorithms have been used: The approach used only the
The first has been consecrated for the | electrical attributes as input data
implementation of a signal threshold | (Impp, Vmpp, Voc, Isc).
approach.
(Chine et al.,
e ANN The second consists of an ANN-based
2016)
approach.
Ability to localize and correctly identify
the different faults with neglected
confusion.
High Accuracy in fault detection of PV | The approach used only the
systems with PSO equals t0 93.33% . electrical attributes as input data
Different cases of faults diagnosis | (Voc, Isc, Pmpp, Vmpp).
(Liao et al., including in some cases two failures in the | The response time was not
e PSO
2017) same fault (eg: the combination of | mentioned for both intelligent

temperature fault and aging cells).
Can predict the fault type in real time

without additional hardware support.

methods.
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No indication about the
confusion classification between

classes.

The fault detection is based on threshold | 12 features have been used to
between healthy and faulty PVA. ensure the detection of global

Multiclass  classification ~ employing | PVA.
(Belaout et al., e ANFIS
different MFs
2018) e MLP
Comparative study between neuro-fuzzy

classifier and MLP.

Precision is 99.15%.

The remainder of this article is organized into four parts. Section 2 exposes the Co Active Neuro Inference System
(CANFIS), Section 3 gives the presentation of experimental PV setup. Section 4 represents methodology, Section 5

presents the results and their discussion. At the end, the conclusions and recommendations are set out in Section 6.

Hybrid Neuro-Fuzzy developed algorithm (ANFIS)

Adaptive Neuro Fuzzy Inference system or Neuro Fuzzy logic is a Hybrid Artificial Intelligence system
according to the literature is called Neuro Fuzzy System (NES) or Fuzzy Neural Network (FNN) [41]. This type of
hybrid artificial intelligence is considered as a powerful tool from point of view of its clear interpretation of the output
results as well as simple extension of the ability by the insertion of the new rules. This ANFISs issue from combination
between artificial Neural Network that are responsible to represent the structures and Fuzzy logic by the employment
of the fuzzy production rules and membership functions that are automatically achieved as well as adjusted from the
pick-up numerical data employing if- then rules that give authorization to obtain an extra robust model [42]. Control
designates the main aspect of ANFIS applications for the reason that in this case the research focuses on the
approximation of nonlinear functions, particularly in the modeling and identification classes of systems [43].
Habitually, the Takagi-Sugeno fuzzy inference system is frequently used for its precision model, where a fuzzy rule
has a role to combine the crisp linear inputs rather than a fuzzy set. A classical rule set using two fuzzy IF-THEN rules
in the first order of Takagi-Sugeno fuzzy inference model can be demonstrated as:

Cl1 is calculated by the rule below:
IF (T is A1) AND (G is B1) THEN (C1 = P,T + Q,G +1,) (1)
C2 is calculated by the rule below:
IF (T is A2) AND (G is B2) THEN (C2 = P,T + Q,G + 1) @)
Here Ai, A; and By, B; are membership values with C; and C; of input variables T and G, respectively. Py, Qi,

11 and P3, QQ,, 12 are the parameters are obtained during the training process. ANFIS can adjust these fuzzy (If-Then)
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rules and membership functions in the goal to reduce the output error measure or to clarify the relationship between
the input— output for complex systems [44].
CANFIS algorithm architecture
The Co Active Inference System model belongs to the ANFIS model. we can consider that it is a globalization of
ANFIS with the conservation of all the advantages of its precedent reflecting on a global approximation of the general
nonlinear function. The main objective of the CANFIS model is to solve one of the critical weaknesses of ANFIS
systems while maintaining the fundamental rules [42]. From an architectural point of view, the source of the powerful
capability of CANFIS comes from the model-dependent weights between the consequent layer and the fuzzy
summation layer [45]. Typically, in this type ANFIS of general bell-shaped, Gaussian and sigmoidal (MF) membership
functions (MFs) have been introduced by a fuzzy control system. A basic reasoning of the Takagi—Sugeno inference
system produces an output function f from the input variables T and G are shown in Fig. 1 which represents the
CANFIS structure, where the above rules are implemented. In this figure, the squares indicate the adaptive nodes,
while the circles represent the fixed node. Five main layers make up the CANFIS model and each layer performs a
specific task in the FIS (Fuzzy Inference System) demonstrated as follows:
Layer 1 (Premise layer): Each adaptive N node in this layer is labeled by square and represents a node function,
demonstrated as follow:
0i1 = pai(T) =12 3)
0i1 = upi—2(G) =12 (4)
Where T, G are the input to node i, and A;, By, are the linguistic label (small, large, etc.) denoted by favorable
membership functions (MF's) pai (T) and psio(G). Generally, in the CANFIS model, the MF's can take some functions
such as: Gaussian, sigmoid or bell-shaped where their equations is demonstrated in Table 2.
Table 2
The basic MF's used in the study.

_(1=0?
. = a?
Gaussian Uai (T) € Z (5)
1
Sigm()id nuAl.(T) = 1 +e—a(T—c) (6)
1
Bell-shaped tai(T) = 1+|E|2b 7)

a

The same thing can be used with ppi2(G) and replace T by G. where the a, b, ¢, 0 are the parameters that change the
shapes of the MFs over an interval of 0, 1[ [46].

Layer 2 (Product layer): In this layer, the nodes represented in the circles labeled by [ apply the rule operator (AND
/ OR) in order to provide one output which indicates the antecedent’s results for a fuzzy rule that multiplies the

entering signals, as follow:
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012 = w; = ppi(T) * ppi (G), i=12 (8)

Here 0; , is the output of the layer 2, and the output signal w; indicates the firing strength of the rule.

Layer 3 (The rule or Normalization layer): Is non-adaptive layer, where the nodes represented in the circles are
labeled by N then they compute the ratio of the firing strength of the ith rule to the sum of the firing strengths of

global rules as follow:

wi

O3 =W = i=1.2 )

wyt+wy
The outputs of this layer (W) is known as normalized weights or normalized firing strengths (Quej et al., 2017).
Layer 4 (Defuzzification or Consequent layer): In this layer the nodes are symbolized by squares, where each linear
function computed the weighted output as follow:

O =wiC; =w;(PT+QG+1), =12 (10)

Here, W is the output of layer 3; P;, Qi and r; are considered as consequent parameters of a linear combination in the
Sugeno inference system.

Layer 5 (Output or Fuzzy association layer): The role of this layer is to combine the total inputs coming from the

consequence layer, then transforms the fuzzy classification outcomes into an original output. In this layer, the node is

non adaptive and calculates the global output of total incoming signals as follow:

Os; = 2 wC; = % = f out = estimated global output, i = 1,2 (11)
iw;
2 Membership

fonctions for each  Fuzzification ~Normalization
input variables or AND layer layer

Layer 1 Layer 2 Layer 3

| ® e <$ " \“} n y&— @y
< ? >< Y

Input Variables

Layer 5
—
Global Output of
:) Z (Impp r Vmpp) - o
L wCi+w,C
| f(@,CwsC,) =~ 22
w1+&)2
Bias

Defuzzification { C=RPIT+QIGHN) oo mation o

or oolr;syi?-uent C=Ff(PiT+QyG+13) output layer

Fig. 1. CANFIS architecture.
2.2. Performance of the CANFIS model in GCPV systems
In order to evaluate the performance of the CANFIS algorithm in a grid-connected PV array compared to the
real measured model, some residual criteria must be considered, such as: (MSE) the Mean Square Error, (RMSE) the

Root Mean Squared Error, (MAD) the Mean Absolute Deviation, (MAPE) Mean Absolute Percent Error as well as
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th

(R* Correlation Coefficient shown in equations (12, 13, 14, 15, 16) respectively, where ya is the n™ measured datum,
$n is the n" simulated data and N is the size of the database (the number of validation epochs) [20]. Be aware that the
validation data of the performance evaluation stage are the inputs of the algorithm which are the operating conditions

of the PV plan (the solar irradiation and the PV temperature), and the output data are the current and the voltage at

MPP:
MSE = <3N, — 35) (12)
RMSE = 230, (5 = 72) (13)
MAD = ~3N_ |y — il (14)
MAPE = %zﬁzl%xloo% (15)
v -1 () 1

Presentation of experimental PV setup
According to the approaches cited in [20- 22], the fault diagnosis of small grid connected of a PV plan has
been developed employing an intelligent algorithm founded upon different methods of ANNs, where the results were
obtained with success. The PV array in this study is composed by thirty PV modules shared in two branches and each
branch contains fifteen PV modules linked in series. The characteristics of the PV module as well as the electrical
properties of the PV array used in this work are summarized in Table 3 and Table 4 respectively.
Table 3
Electrical properties of the Isofoton 106-12 PV module [20- 22].

Peak power 106 W
Short circuit current (Isc) 6.54 A
Open circuit voltage (Voc) 21.6V
Voltage at Maximum Power Point (Vmpp) 17.4V
Current at Maximum Power Point (Impp) 6.10 A
Number of cells connected in Series 36
Number of cells connected in Parallel 2

Cell Short circuit current 327 A
Cell Open circuit Voltage \%

Tob Regul Sci. ™ 2023;9(1): 3809-3844 3816
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Global PV array
PV Sub array studied
Sunlight apparatus

Temper ature apparatus

Data logger

Inverter

Methodology

. Dara analysis

Table 4

Components and characteristics of PV installation [22].

90 PV modules with monocrystalline technology
30 PV modules divided in two strings : 15 x 15
Thermoelectric Pyranometer

K-type thermocouple

Pilot PV cell

Agilent 34970A

1G30 Fronius

Class’s Identification, localization, isolation and diagnosis are an inescapable trend with a view to guarantee

the stability, efficiency, reliability in addition to the quality of the grid connected PV system. For this, the present

approach is divided into three important steps:

In order to test the accuracy of the CANFIS algorithm, the first step described in Fig. 2 is necessary requiring real

climate data: Temperature (°C), Solar Irradiation (W/m2) in addition to electrical data: Current (Impp (A)) and

voltage (Vmpp (V)) at maximum power point. The number of samples used in this approach is 5550 samples for each

attribute cited above in this section (Temperature, solar irradiation, current and voltage at maximum power point)

divided in 3000, 1250 and 1300 for training, checking and testing phases respectively. This stage is considered as

comparative part employing residual criteria (MSE, RMSE, MAPE, MAD and R?) between electrical data furnish

from real PV array and two CANFIS blocs, each bloc is devoted to provide the predicted electrical data (Impp, Vmpp)

separately from the same real climate data of PV array.
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PV Array

l Temperature ( C°)
—_—

Vimpp Feal meas

Irradiation (iN/ m?2)
* q

A

Impp real meas

Performance Analysis

Vonpp Predicted

MSE  (Vinpp; Impp)
RMSE (Vnpp Tmps)
MAPE (V.
MAL mpp s L

Y

1

Tnpp Predicted

™|k

CANFIS Application

Reprocessing

Fig. 2. Performance analysis scheme between real and predicted data of PV array.

The second and the third steps are illustrated in the Fig. 3, the isolation and analyzation through the deviation propose

in percentage (the scatter plot in linear percentage deviation) between real healthy electrical output data coming from

PV array and predicted electrical output data issue from CANFIS algorithm of different faults covered in this work

are depicted in second step.

The third step represents the combination of the deviation of Impp and Vmpp of different class categories with the

aim of obtaining the overall diagnosis of the designed PV system with a significant degree of accuracy and efficiency.

Real Healthy I.pp Meas
Electrical output
data from PV Vimpp Meas
Array
Y —
—
———>
: ——=
Predicted Lpp Pred
Electrical output
data from Vimpp Pred
CANFIS

Deviation

classification Global
Analysisof — >  diagnosis
Impp , Vmpp analysis
(%)

Fig. 3. Global diagnosis of PV array using percentage deviation process.
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Fault detection and diagnosis procedure

The CANFIS algorithm is designed to analyze, identify and diagnose healthy case in addition to six faulty cases

depicted in Fig. 4 (a, b) citing healthy case in (a) and in (b): 1) two PV modules short circuited in branch of PV array,

2) five PV modules short circuited in branch of PV array, 3) two inversed By-pass diodes, 4) ground fault and 5) open

circuit branch in PV array. The Table 5 resumes all classes treated in this study over and above of their symbols.

Table 5

The different state of the system with faults and their symbols.

Faults Symbols
Healthy system Class 1
Two PV modules short circuit Class 2
Five PV modules short circuit Class 3
Two inversed By-pass diodes Class 4
Ground fault Class 5
Open circuit PV branch Class 6
PV
vaT = To Inverte
DC - DC Converter
1# Open Circuit PV
3# 5 PV modules Short
4# 2 Inversed bypass
5# Ground fault
6# Aging fault
@ Current sensor
* Bypass diode
* Inversed Bypass
I I
1 {2 PV —s o
% @ va T = o < To Inverter
—A- Blocking diodes ﬁ// = |
T T S— DC - DC Converter
1 )
2
T T @ Current sensor
3 * * * Bypass diode
I
L _fe—

(a) (b)

Fig. 4. Overall scheme of the PV array (a) healthy PV array (b) faulty PV array.
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The description of various classes treated in this study, their combinations and their corresponding codes are in
accordance with Tables 5 and 6 respectively. The demonstration of classification analysis and diagnosis are based on
the percentage linear scatter plot of both current and voltage of maximum power point and are clearly demonstrated
by the flowcharts in Fig. 5 where the flowchart (a) is designed to detect the fault and the second flowchart (b) is
designed to identify and isolate five faulty cases citing: 1) Two PV modules short circuit, 2) Five PV modules short
circuit, 3) Two inversed By-pass diodes, 4) ground fault and 5) Open circuit PV branch. Where each case in the two
flowcharts contain its own signature presented under percentage deviation between experimental and predicted data
in addition to the threshold that are considered as a confidence interval in the aim to avoid the overlap between

signatures of different faults. Table 8 illustrates the fault classes codes treated in this article and their relative deviation

symbols.
Table 6
Classes’ description and codes.
Classes description Codes

Maximum power point current of healthy conditions Cl1I

Maximum power point current of open circuit PV branch C2l

Maximum power point voltage of heathy conditions Clv

Maximum power point voltage of two PV module short circuit c2v

Maximum power point voltage of five PV modules short circuit C3v

Maximum power point voltage of two inversed By-pass diode C4v

Maximum power point voltage of ground fault Cs5v

Table 7
Different combination of classes obrtained.
Impp Class Vmpp Class Global Description Global Classification

Cl1I Clv Healthy system Class1
ClI c2v Two PV modules short circuit in Branch Class 2
Cl1I C3v Five PV modules short circuit in Branch Class 3
Cl1I C4v Two inversed By-pass diodes in PV Branch Class 4
Cl1I Cs5V Ground fault in PV branch Class 5
C2l Clv Open circuit fault in PV branch Class 6

Tob Regul Sci. ™ 2023;9(1): 3809-3844 3820



Chérifa Kara Mostefa Khelil et al.
Newfound Intelligent Solution for Grid Connected PV Systems Diagnosis Based on CANFIS Algorithm

START

v v v
Climate data from acquisition PV array variables : Measured data from data
(Solar irradiation and PV module Number of modules acquisition
Temperature Number of branches (Imppmew Vmppme“)

Predicted data from
CANFIS (I V,

mppsim’ mppsim)

A\ 4

dev I,=98+2%
dev V1=99:1%

A 4

A 4

Healthy system
Activation of Fault analysis l
and identification process

Next sample measurement

No Yes
dev 1;=(98+2)%

Healthy system
v
Open circuit Fault N Yes
in PV Branch Two inversed By-pass
diodes
y
o
dev V,=(661+2)% Two PV modules
Short circuit
Np Yes
dev Vs=(6+2)% Five PV modules
Short circuit
A A4
Other Faults ground Fault

i l b, A4 A4

'

Report (file.xls) Alarm

Next measurement (Fault
Analysis stage)

v

(b)

Fig. 5. Flowchart of the diagnosis algorithm (a) fault detection (b) global diagnosis, of PV system.
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Table 8

Deviation symbols with their relative classes codes.

Deviation | Dev I1 Dev 12 Dev V1 Dev V2 Dev V3 Dev V4 Dev V5
symbols
Classes Cl1I C21 Clv Cc2v C3v C4V G5V
codes

5. Results presentation and discussion
5.1.  Model development and training
In order to guarantee the fault diagnosis of PV system, the training phase of developed model (CANFIS) has
been done with two input data and two output data where each attributes contains 3000 samples for the six classes
treated in this study. The important parameters required by CANFIS algorithm are illustrated in the Table 9 below:
Table 9
Parameters of the CANFIS algorithm
CANFIS parameters

Input data 2 (Solar irradiation, PV module Temperature)

Output data 2 (Current and voltage of maximum power point)

Fuzzy model TKS (Takagie-Suegeno)

Membership functions (MFs) Gaussian Membership functions
MFs 2 MFs per input variable
Number of rules 2
Error goal 0.001
epochs 1000
Momentum 0.65
Output membership function linear
Learning algorithm for adjusting Hybrid
parameters
5.2. Healthy case
5.2.1. Voltage

Part (a) of Figs. 6, 7 and 8 corresponds to line graphs between healthy measured voltage and predicted healthy
voltage from CANFIS algorithm for training, checking and testing phases respectively, where the results shown a
perfect concordance between both models. Voltage’s gap in part (b) in the same figures cited above in this section
reveal a good results between (-15, +15 V) comparing to the global voltage of the healthy PV array. While the scatter
plot in linear percentage deviation between real measured data and predicted CANFIS data for healthy voltage is

around 99% in part (c) of all figures of section (5-1-1) which is an excellent result. From the results proved in this

Tob Regul Sci. ™ 2023;9(1): 3809-3844 3822
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section, it can be evident to say that voltage’s CANFIS algorithm has shown beyond doubt a significant level in term

of accuracy and efficiency and it is able to be used for other faulty voltage in PV array that we will demonstrate in the

next sections.

Training
Training 60 Training

300 —C1V|-

———CIv 40 |

250 1

I ~ 20 i
| >
S 200} <
N 1] O E 4
o, o0
2150 4
100 €
> 40t ]
50 6ol |
0 ‘ 80 ‘ ‘ . | |
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Samples Samples
(a) (b)
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300 ‘ ralPlng
1#x-1.3%10°15
= Clv
250 F
£ 200
et
(5]
8150 F
o
(=¥
E
> 100
50
0 . | | | ‘
0 50 100 150 200 250 300
Vmpp meas (V)
(©
Fig. 6. Real versus predicted healthy voltage of training phase.
Checking
Checking Checking

300 T . 20 T . :

250 15T 1
o ~ 10} -
2 200 >
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N g 5 i
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@ 150 - |
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Samples Samples
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Checking
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Fig. 7. Real versus predicted healthy voltage of checking phase.
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Current

In this section, the line graphs between healthy measured current and predicted healthy current from CANFIS
algorithm for training, checking and testing phases respectively illustrated in part (a) of Figs. 9, 10 and 11 reveal an
impeccable correspondence between both models. In the other hand, the current’s gap in part (b) in the same figures
of the actual section is apparent with low margin of error which is in average between (-0.5, 0.5 A) comparing to the
overall current of the healthy PV array. When to the part (c) of the same figures in this section, the scatter plot in
linear percentage deviation between real measured data and predicted CANFIS data for healthy current is around 98%
which represents a remarkable result. According to the results shown in the figures of the present section, current’s
CANFIS algorithm has confirmed an excellent quality from precision and efficiency point of view that can be taken

in consideration for other faulty current.
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Fig. 9. Real versus predicted healthy current of training phase.
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Fig. 11. Real versus predicted healthy current of testing phase.

Performance analysis of the CANFIS algorithm

The principal aim of the Fig. 12 is to prove the performance evaluation of the CANFIS algorithm results by the
employment of residual criteria cited previously for the healthy voltage and current at maximum power point of PV
array comparing to the real measured data. It’s clear to note that the model has furnished a high quality in term of
precision whether for the voltage or for the current. In this part, Fig. 12 (a) represents the MSE displaying 0, 7.53,
19.89 and 0.026, 2.88, 15.18 in training, checking and testing phases for both Vmpp and Impp respectively. While
Fig. 12 (b) illustrates the RMSE where the results are: 0, 0.16, 4.46 and 0.16, 5.36, 3.89 for Vmpp and Impp in
training, checking and testing phases respectively. MAPE is demonstrated in Fig. 12 (c), the results here are: 0, 2.80,
2.79 for Vmpp and 3.70, 4.65, 4.59 for Impp in the three phases respectively (training, checking and testing). MAD
in Fig. 12 (d) displays 0.75, 1.48, 2.54 for Vmpp and 0.061, 1.28, 4.98 for Impp in training, checking and testing
phases respectively. In Fig. 12 (e), the results are as follow: 0.999, 0.999, 0.998 for Vmpp and 0.997, 0.994, 0.99 for
Impp in the three phases (training, checking and testing). The Table 10 below illustrates the average + Standard

Deviation (SD) of R* for both Vmpp and Impp in training, checking and testing phases.
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Fig. 12. Global residual criteria of Vmpp and Impp for healthy case.
Table 10
R2 Standard deviation of the CANFIS algorithm.
Training Checking Testing
Average + SD (Vmpp) 0.999 + 9.57 x 10 1+2.17x107 0.999 + 8.57 x 10™*
Average + SD (Impp) 0.997+ 4.75 x 107 0.994+ 8.58 x 107 0.99+ 8.38 x 10

5.3.  Two PV modules short circuited
5.3.1.  Voltage

It is clear to observe the few difference between the healthy measured voltage and the predicted of two PV
modules short circuit fault from CANFIS algorithm in Part (a) of Figs. 13, 14 and 15 corresponding to line graphs
for training, checking and testing phases which is of the order of the tenth. Voltage’s gap in part (b) in the same
figures cited above in the present section demonstrates the difference between healthy measured voltage and the
predicted voltage of the present fault which is in average between (20 and 35 V) in the three phases (training, checking
and testing). While the scatter plot in linear percentage deviation between the real healthy measured data and the
predicted from CANFIS algorithm of two PV modules short circuit fault is around 88% in part (c) of all figures in

the current section for training, checking and testing phases respectively.
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Fig. 13. Real healthy versus predicted two PV modules short circuit voltage of training phase.
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Fig. 15. Real healthy versus predicted two PV modules short circuit voltage of testing phase.
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Current

In this case, the current values at maximum power point is the same as in section 5-1-2 with negligible change
that cannot be observed.
Five PV modules short circuited
Voltage

In Part (a) of Figs. 16, 17 and 18 the predicted voltage of five PV modules short circuit fault from CANFIS
algorithm corresponding to line graphs for training, checking and testing phases diminishes by the one third comparing
to the healthy real measured voltage. When the Voltage’s gap in part (b) in the same figures cited in the present section
illustrates the difference between healthy measured voltage and the predicted voltage of the actual fault which is in
average between (60 and 80 V) in the three phases (training, checking and testing). The scatter plot in linear percentage
deviation between the real healthy measured data and the predicted from CANFIS algorithm of five PV modules short

circuit fault is around 66% in part (c) in all figures of the section (5-3-1) for training, checking and testing phases.
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Fig. 16. Real healthy versus predicted five PV modules short circuit voltage of training phase.
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Fig. 18. Real healthy versus predicted five PV modules short circuit voltage of testing phase.
Current
In this case, the current values of Maximum power point is the same as in section 4-1-2 with negligible change
that cannot be observed.
Two inversed By-pass Diodes
Voltage

An important number of samples of the predicted two inversed by-pass diodes fault from CANFIS algorithm
are in overlap with healthy measured data in Part (a) of Figs. 19, 20 and 21 corresponding to line graphs for training,
checking and testing phases which is difficult to separate the difference between both classes. Voltage’s gap in part (b)
in the same figures cited above in the present section demonstrates the difference between healthy measured voltage
and the predicted voltage of the present fault which is in average between (6 and 18 V) in the three phases (training,
checking and testing). While to the scatter plot in linear percentage deviation between the real healthy measured data
and the predicted of two inversed by-pass diodes fault from CANFIS algorithm is around 95 % in part (c) of all figures

in the present section for training, checking and testing phases.
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Fig. 19. Real healthy versus predicted two inversed by-pass diodes voltage of training phase.
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Fig. 21. Real healthy versus predicted two inversed by-pass diodes voltage of testing phase.
Current

In this case, the current values at Maximum power point is the same as in section 5-1-2 with negligible change
that cannot be spotted.
Ground fault
Voltage

It is noteworthy to do the difference in Part (a) of Figs. 22, 23 and 24 between healthy real measured data and
the predicted voltage of ground fault from CANFIS algorithm corresponding to line graphs for training, checking and
testing phases where the lowering is of the order of the one-fifth . When the Voltage’s gap in part (b) in the same
figures cited in the present section illustrates the difference between healthy measured voltage and the predicted voltage
of the actual fault which is in average between (200 and 250 V) in the three phases (training, checking and testing).
The scatter plot in linear percentage deviation between the real healthy measured data and the predicted of ground
fault CANFIS algorithm is around 7% in part (c) of all figures in section (5-5-1) for training, checking and testing
phases.
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Fig. 22. Real healthy versus predicted ground fault voltage of training phase.
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Fig. 23. Real healthy versus predicted ground fault voltage of checking phase.
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Current

In this case, the current values at maximum power point is the same as in section 5-1-2 with negligible change
that cannot be remarked.
Disconnected string
Voltage

In this case, the voltage values at maximum power point is the same as in section 5-1-1 with negligible change
that cannot be distinguished.
Current

The line graphs in part (a) of Figs. 25, 26 and 27 between healthy measured current and predicted from
CANFIS algorithm of open circuit branch fault in PV array for training, checking and testing phases demonstrated
the difference between both classes where the current of this fault has decreased by half comparing to the healthy .
From current’s gap point of view in part (b) of the same figures in this present section, which is the difference between
healthy and open circuit fault is around half comparing to healthy current. When to the part (c) of all figures in section
(5-5-2), the scatter plot in linear percentage deviation between healthy real measured data and predicted CANFIS data

for open circuit fault (C2V) is around 46%.
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Fig. 25. Real healthy versus predicted open circuit branch in PV array of training phase.
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Fig. 26. Real healthy versus predicted open circuit branch in PV array of checking phase.
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Fig. 27. Real healthy versus predicted open circuit branch in PV array of training phase.

Global faults Classification
Voltage

Fig. 28 shows the global voltage classification, in this case the healthy voltage is considered as concordance to
identify and localize the deviation between predicted classes from CANFIS algorithm. For ground fault the voltage of
PV array has around 93% fall, and for five PV modules short circuit fault the voltage decreases by 34%, around 12%
lowering for two PV modules short circuit fault in PV array, while for two inversed by-pass diodes the voltage decreases
by around 5% and it is too difficult to establish the identification of this class as most samples depict a misclassification
with healthy voltage, and the deviation for healthy predicted voltage is around 99.9 %. In the goal to ensure an
excellent level of precision and avoid the misclassification’s voltage between classes, it should be inescapable to take in

consideration only the part above 70V for healthy measured voltage with its corresponding faults in Vmpp predicted
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Current

Fig. 28. CANFIS Global voltage classification, (a) training, (b) checking and (c) testing.
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Fig. 29 reveals the global current classification for training (a), checking (b) and testing (c) phases. That is

uncomplicated to analyze the deviation between healthy measured data and both predicted cases from CANFIS

(healthy and open circuit branch fault in PV array), the healthy current case has been taken as reference to be compare

to the faulty case which is around 50% drop down in all phases (training, checking and testing). In order to guarantee

the high quality of precision, it should be avoid to classify the current values under 3A for healthy measured current

and its corresponding fault in Impp predicted axe.
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Fig. 29. CANFIS Global current classification, (a) training, (b) checking and (c) testing.
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Conclusion

The present paper brings a new approach in term of diagnosis, identification and recognition classes of small GCPV
system by the employment of a hybrid Artificial Intelligence called co active neuro fuzzy logic (CANFIS). These
process are necessary not solely to warrantee the stability, quality and reliability of the global PV system as well as best
power generation but even to reduce human intervention with all the time that it takes. The novelty of the present
study is to diagnose the most permanent faults be faced in PV system: open circuit PV branch, two PV modules short
circuited, five PV modules short circuited, ground fault in addition to the two inversed by-pass diodes fault which was
so difficult to diagnose where the solution has been successfully reached. The isolation and localization of fault
diagnosis is based on electrical data (Vmpp, Impp) in two intelligent blocs separately. The First step is to test the
performances of the proposed CANFIS algorithm by residual criteria citing: Mean square error (MSE), Root mean
square error (RMSE), Mean absolute percentage error (MAPE), Mean absolute deviation (MAD) and coefficient of
correlation (R2) which globally display an average of 4.65% and 0.99 for healthy electrical parameters. The second
step is the isolation and the fault classification process which is considered as a fundamental part in this work by the
employment of the scatter plot in linear percentage deviation between real healthy measured data and predicted data
from CANFIS algorithm for all faults cases in addition to healthy case where it is clear to observe the lowering of
different faults comparing to the healthy model with: 50% for open circuit branch in PV array, 93% for ground fault,
34% for five PV modules short circuit, 12% for two PV modules short circuit and 5% for two inversed by-pass diodes
in PV array , knowing that all the classes treated in this approach contain their own signature under the notion of
threshold in addition to the gap which changes from one class to another in order to avoid the problem of overlapping
between classes, the CANFIS algorithm has succeeded in showing the accuracy of fault diagnosis for all studied classes
of PV systems even for the fault relating to the bypass diode which at present has been remoted due to its difficult
isolation.
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