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Abstract

Purpose - A new triangular membrane finite element based on the strain approach is developed for the linear,
nonlinear and free vibration analysis.

Design/methodology/approach — The current element has two degrees of freedom at each of the three corner
nodes and the internal node (two translations) and satisfies the exact representation of the rigid body modes of
displacements.

Findings - The displacements field of the element has been developed by the use of the strain-based approach and
it based on the assumed independent functions for the various components of strain satisfying the compatibility
equations.

Originality/Value - The developed element is implemented in the ABAQUS code using the UEL subroutine (User
Element subroutine of ABAQUS). For elastoplastic analysis, Von Mises and Mohr-Coulomb yield criteria are adopted.
Several numerical tests were performed, including linear, nonlinear and free vibration problems. The results
obtained were compared to the available analytical and numerical solutions. It turned out that the use of this
element allows acquiring effective convergence and accurate results.
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1. Introduction

The strain-based approach was an important area where researchers worked on the development of new finite elements.
Several researchers have used this approach to formulate robust elements. The displacement field can be obtained by direct
integration of the imposed strains field contrary to the conventional displacement model. The first applications of this

approach that of (Ashwell et al.,1971).for curved problems. This approach was extended to plane elasticity (Sabir.,1985a;
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Hamadi et al.,2006). , to problems of three-dimensional elasticity (Belarbi et al.,1999; Messai et al.,2019), in shell
structures(Sabir et al.,1972; Hamadi et al.,2015), and for bending of plates(Belounar L et al.,2005; Belounar A et al.,2018).
The strain-based elements in polar coordinates were also developed by (Sabir.,1985b; Khiouani et al.,2020).

In this paper a new triangular plane elasticity element based on the strain approach with three Corner Nodes and an
Internal Node with the two essential external degrees of freedom (U and V) at each node SBT4 (Strain-based Triangular
with four Nodes) is proposed to enrich the Library of existing finite elements.

The static, nonlinear and free vibration analyses are considered in a series of test cases of the literature to evaluate its
performance. Through these numerical examples, results relating to the quick convergence will also be given, and
comparisons will be made with other elements.

The developed element is implemented into ABAQUS using the UEL subroutine (User Element subroutine of
ABAQUS)

2. Materials and methods
2.1 Formulation of the displacements field
The strain-displacement relations for plan elasticity element in the Cartesian coordinates system Figure 1 can be written
as:

Figure 1 Triangular strain based element (SBT4)
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In matrix form, it can be given as:

£, a/ax 0
g =10 a/ay u}

’ v

7, o/oy ofox
The strain components are given by equations (1) and must satisfy the compatibility equation which is given as:
2 2 2
68X+85y_87/xy:0 )
oy 2 ox? oxoy
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The current element SBT4 possesses two degrees of freedom (u, v) at each of the four nodes and therefore the
displacement field should contain eight independent constants. First, the resulting displacement fields to the rigid

body modes are obtained by equating the three strains given in equations (1) to zero, and after integration, we can

obtain:
U=a —-ay
V =a, +a,x ®3)

Since the three constants (al, a2 and a3) are taken in the representation of the rigid body modes, the five constants
left are used to express the displacement due to straining of the element satisfying the compatibility equation and
which is given in equations (4). The assumed strains of the developed element in terms of the five remaining
constants (a4, a5, a6, a7, a8) are apportioned as follows:

1
£, =88y -8 X

1
g, =—a5§y+a6+a7x

7xy = a8
(4)

The assumed strains of equations (4) are substituted in equations (1) and the obtained displacements are summed

with those of equations (3) to get the final displacement functions given by:
1, 1.,
u:al—a3y+a4x+a5xy—a7(gx +Ey )+ay/2
1. 1.,
v=a2+a3x—a5(gy +Ex)+a6y+a7xy+a8x/2 5)

For developed element SBT4, the displacement function (equations

(5)) and the strain functions (equations (4)) can respectively be written in matrix from as:

TRMELL o

Y
SX
{e} =14 1=[Ql{a} )
7xy
With:
{a}={a,8,..a)
1 0 -y x Xy 0 —(£x2+1y2) y/2
6 2
[P]= L (®)
01 x O —(Ey2+5x2) y Xy x/2
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)

The nodal displacements vector {qe} is obtained in terms of the constant parameters vector {a} by applying the

relation (5) for each of the four element nodes coordinates (x;, yi), (i=1, 2, 3, 4) as:
{a.} =[C{a}
With:
T
{qe} = {ul’Vlluz’Vz'U3!V37U4’V4}

And the transformation matrix [C] is:

[P(x.y,)]
[P(Xz’ yz)]
[P(Xel ys)]
[P (%))

c]-

The constant parameters vector {a} can be derived from equations (10) as follow:

ta}=[c] " {a.}

By substituting equations (12) into equations (6) and (7) we obtain:

Ul =[PIlC] o} = [N]{a.)
te}=[QLuy) e {a}=[Bl{a)

INJ=[PIiCT™: [s)-[ety)el”

The stress-strain relationship is given by:

to}=[Dl{e}

Where the elasticity matrix [D] is given in appendix A for plane stress and plane strain.

The standard weak form for static and free vibration can respectively be expressed as:

£5{8}T {o}dV = [5{U}T{fv}dv

[5{5}T {a}dV+[5{U}T (U}dv =0
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By substituting equations. (13), (14) and (16) into equations (17) and (18) we obtain:

ota (o7 ol ) -ota) | T 1o -

T(J[B 0] [B]dvj (jp[m [N]dvj{ -0 00)

Where the element stiffness {Ke} and mass {Me} matrices are respectively as:

[K.]- [[&] [o][ev ~[c]" (J [Q]T[D][Q]dvj[cr o

\ \

[M,]=]p[N] [NJv =[c]"| J[P] [Phv [[c]" 22)

V.
e

And the element nodal body forces vector is:

(Rl =JIN {£.Jov =[cT" | [[PT {f}ov (23)

VE

After assembly over all elements, the global stiffness and mass matrices {K}, {M} are used in global equations for static

and free vibration given as:

[K]{a}=[F] (24)
[K]-a[M]{a} =0 25)

3. Results and discussion

3.1 Linear tests

3.1.1 Linear Mac-Neal beam

In this test, the problem of a slender Mac-Neal beam ([27]) shown in Figure 2 is considered for testing the
sensitivity to mesh distortion. This analysis is considered as a test of a thin beam with shear in the plane and out of
the plane, a tensile force and a constant bending moment. Three different mesh shapes, rectangular, trapezoidal and

parallelogram are considered.

Figure 2 Mac-Neal's elongated beam subjected to end shear (1) and end bending (2)
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Data: E= 10", v=03,L=6,t=0,1
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The obtained results presented in Table 1 show that the developed element is insensitive to mesh distortion and are
in good agreement with the exact solution for all loading types and all mesh shapes for the reason that it is free for

any blocking phenomenon.

Table 1 Normalized deflection at free end for Mac-Neal’s elongated beam subjected to end shear and bending

Bending End shear
Element
Regular Trapezoidal Parallel Regular Trapezoidal Parallel
Q4 0,093 0,022 0,031 0,093 0,027 0,034
PS58 (macNealet al.,1985) 1,000 0,046 0,726 0,993 0,052 0,632
AQ (Pian et al.,1984) 0,910 0,817 0,881 0,904 0,806 0,873
MAQ (Cook.,1986) 0,910 0,886 0,890 0,904 0,872 0,884
QA4S (Yanus et al.,1989) - - - 0,993 0,986 0,988
07 (Mc Neal et al.,1988) 1,000 0,998 0,992 0,993 0,988 0,985
SBT2V (Belarbi et al.,2005) 0,948 0,952 0,944 0,944 0,833 0,874
SBTIEIR (Sabir .,1985a) 0.437 0.015 0.374 0.435 0.005 0.333
CPS4 0,093 0,022 0,031 0,093 0,027 0,034
SBT4 1.000 1.000 1.000 0.993 0.993 0.993
1,000 1,000
BeamTheory
(0,270) (0,1081)

3.1.2  Short cantilever beam under shear force

The second test is a short homogeneous cantilever beam, which is subjected to a parabolic shear force at its free
end. The other end is fixed whose nodal displacements on this side are set to zero.

The exact deflection of the free end is equal to 0.35601 (Szek et al.,1992) (Table 2). Figure 3 shows the geometry
of the beam whose length is 48, a height is 12 with a width of 1. The modulus of elasticity is equal to 30000 and the
Poisson's ratio is 0.25. All the associated values in this example are dimensionless. The total shear load acting on the
beam is 40.

We remark that the present element SBT4 behaves almost as CPS6 and accurate quickly to the reference

solution.
Figure 3Short cantilever beam under shear force
y
IZI :—0.\‘ D
! 48 4
Table 2 Normalized vertical displacement at the free end of the beam
Mesh

Element 2x2 4x4 8x8 16x16
MEAS [34] 17.94 43,92 75.05 92.17
Allman 52.25 66.61 87.91 96.44
OPT 91.06 96.00 98.23 99.27
CST Hybrid 74.34 91.49 97.38 99.22
SM3 92.76 97.14 98.89 99.60
CPS3 18.02 43,99 75.14 92.27
CPS6 96.26 99.32 99.97 100.25
SBT4 91.88 97.50 99.32 99.97
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3.1.3  Thick circular beam under in-plane shear load

In this test, a thick circular beam subjected to a shear force F = 600 at its free end is considered (Figure 4). Four
regular meshes of 2x1, 4x1, and 6x1 plane stress quadrilateral elements for this curved beam are used. The obtained
results of the vertical displacement at point A are given in Table 3 and compared with those of other elements which

show that the developed element gives more accurate results than the CPS3 element.

Figure 4 Thick circular beam modeled with 4x1 triangular elements

Clamped

Table 3. Normalized vertical displacement at point A (reference solution = 90.1)

Mesh CPS4 CPS3 SBT4
2x1 0.251 0.118 0.496
4x1 0.643 0.244 0.638
6x1 0.811 0.295 0.682

3.1.4 Thin circular beam under in-plane shear load

The test shown in Figure 5 concerns the thin circular beam fixed at one end and subjected to a unit shear
load at the other end.

Three regular meshes of 6x1 and 12x2 plane stress quadrilateral elements are considered. The obtained
results of the vertical displacement at point A are given in Table 4, the vertical displacement at point A and the
near-exact vertical displacement is equal to 0.08734 (Felippa .,2003). It can be seen that the SBT4 element

offers a better convergence towards the exact solution compared to the other elements.

Figure 5 thin circular beam modelled with 6x1 triangular elements

Fl A E=10000000
v=0.25

R1=4.12

R2=4.32

h=0.1

F=1

Clamped
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Table 4. Normalized vertical displacement at point A

Mesh CPS4 HT CPS3 SBT4
6x1 0.073 0.075 0.025 0.31
12x2 0.247 0.251 0.095 0.53

3.2 Free vibration numerical validation

Three problems are presented to demonstrate the robustness and accuracy of the present element for free

vibration analysis.
3.2.1  Free vibration analysis of cantilever beam
In this example, we study a plane stress cantilever beam with geometrical and mechanical characteristics

given in Figure 6.

Figure 6 Meshes of the cantilever beam

10nun
- -
Clamped

I
"

100mm

E=2.1x10° kof fmm* v=0, 3; p=8.0x10™° kgf s*/mn?*; t=1.0mm

Clamped

20x2

Clamped

50x3

Table 5 summarize the four first frequencies and their corresponding modes shapes are depicted in Figure 7.
We remark that results demonstrate satisfactory convergence of the present element SBT4 when compared to
other elements.

Figure 7 The first four natural modes of cantilever beam

w0 B

Mode 1 Mode 2

NN
NN

Mode 3 Mode 4

Table 5.First four natural frequencies (x104 Hz) of a cantilever beam

SFEM (4SC) FEM FEM
element (35] (8-n0deQ9) [35]  (4-nodeQBI) [35] CPS4 CPS3 CPS6 SBT4
0.0861 0.0827 0.0817 0.1000 0.1691 0.0826 0.0819
10X1 0.5071 0.4982 0.4824 0.6077 0.9162 0.4997 0.4876
1.2828 1.2832 1.2526 1.2863 1.2869 1.2834 1.2660
1.3124 1.3205 1.2826 1.6423 2.1843 1.3311 1.2928
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0.0834 0.0823 0.0822 0.0872 0.1117 0.0823 0.0823

20X2 0.4993 0.4940 0.4928 0.5264 0.6539 0.4941 0.4942
1.2828 1.2827 1.2827 1.2837 1.2843 1.2827 1.2823

1.3141 1.3020 1.2982 1.4011 1.6748 1.3032 1.3052

0.0824 0.0822 0.0822 0.0831 0.0877 0.0822 0.0822

S0X5 0.4944 0.4934 0.4934 0.4989 0.5245 0.4933 0.4935
1.2825 1.2825 1.2825 1.2827 1.2829 1.2824 1.2825

1.3024 1.2997 1.2998 1.3168 1.3766 1.2995 1.3008

0.0823 _ 0.8222 0.0824 0.0836 0.0822 0.0822

0.4935 _ 0.4933 0.4947 0.5014 0.4932 0.4933

100X10 1.2824 _ 1.2824 1.2825 1.2826 1.2824 1.2824
1.3000 _ 1.2993 1.3037 1.3196 1.2992 1.2996

3.2.2  Free vibration analysis of a variable cross-section beam

In this part, a cantilever beam with a variable cross-section is considered. The Figure 8 shows the geometrical and

mechanical characteristics. The results obtained of the first four natural frequencies for the SBT4 element are

resumed in Table 6 which shows that this element has similar behaviour as CPS4 and CPS6 elements.

The figure 9 present the corresponding modes shape of the first four natural frequencies.

Figure 8 Cantilever beam with variable cross-section and its meshes

Clamped

40x20

L—10. H(O)=5. H@)=3. r=1.0,
E=30x10", v=03and p=1.0

Figure 9 The first four natural modes of cantilever beam with variable cross-section

B
7\
7\
A
Mode 1 Mode 2 Mode 3

Mode 4
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Table 6. First four natural frequencies (x103 rad/s) for a cantilever beam with a variable cross-section

Element CPS4 CPS3 CPS6 SBT4
10X4 0.2618 0.2810 0.2618 0.2609
0.9188 0.9503 0.9193 0.9177

0.9522 0.9703 0.9522 0.9518

1.8557 1.9304 1.8586 1.8440

20X10 0.2621 0.2656 0.2616 0.2615
0.9189 0.9295 0.9179 0.9151

0.9519 0.9525 0.9520 0.9547

1.8509 1.8749 1.8528 1.8498

40X20 0.2617 0.2626 0.2616 0.2615
0.9180 0.9209 0.9177 0.9147

0.9519 0.9521 0.9520 0.9551

1.8520 1.8588 1.8523 1.851

3.3 Elasto-plastic analysis

3.3.1 Bearing capacity analysis of purely coherent soil

This example studies a flexible strip footing at the surface of a layer of uniform undrained clay shown in

Figure 10. This problem has been treated in (Dai et al.,2007), by the use of the 8-node quadrilateral element.

The elastoplastic properties of soil is described by three parameters Young’s modulus E=105 kN/m?2, Poisson’s

ration v=0.3, and the undrained cohesion Cu=100 kN/m?. The footing is subjected to a uniform stress of q=1

kN/m2, which gradually increases to failure.

In this test, Plane strain conditions, the visco-plastic method and the Von Mises criterion are assumed.

Bearing failure in this problem occurs when reaches the Prandtl load given by gusime=(2+7)Cu.

The Figure 11 plot the obtained results in the form of a dimensionless bearing capacity factor q/Cu versus

centreline displacement. These results show that the SBT4 element is in good agreement with the quadratic

element Q8.

Figure 10Geometry and mesh of the flexible strip footing

Simply supported
Clamped

| « Clamped -

12
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Figure 11Bearing stress versus centreline displacement
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3.3.2 Axisymmetric undrained analysis

Figure 12 represents the assembly of two axisymmetric triangular (SBT4) elements subjected to vertical
compressive displacement increments along its top face. The Q8 element was used in this test by Smith et al.
(Smith.,14). The analysis is of a triaxial test, in which the sample has been consolidated under a cell pressure of
100 kN/m2, followed by undrained axial loading. Two types of analysis are considered in this problem. In the
first case (a) where there is no plastic volume change the dilation angle Y= 0, and in the second case (b) which

includes an associated flow rule ({r = 30°).

The sample properties for this problem are given in Figure 12. In this problem the visco-plastic method and
the Mohr Coulomb criterion were used. The results of the deviatoric stress and the pore pressure with respect

to the vertical displacement in the two cases (/= 0 and Y= 30°) are given in Tables 7 and 8.

We note for the first case that the deviatoric stress of the SBT4 element reaches a peak of 119.43 KN/m?
which is far compared to the solution given by (Grif.854 which is equal to 120.8 KN/m?; on the other hand the
Q8 clement is in good agreement with its value of 121 KN/m? (Smi.,14).

For the second case, which includes an associated flow rule (= 30°), it is noticed the absence of any sign of
failure (rupture) due to the tendency and the dilation. In this case, it is found that the pore pressures continue
to occur and the deviatory stress continues to increase, and this is due to the influence of expansion on the

behaviour of the two elements.
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Figure 12 Geometry and mesh of the axisymmetric problem

Rigid top plate moved vertically

E=2.5x10*KN/m?
v=0.25
ke=10°KN/m?

@'=30°
A\XilS C’=0
om  pmet ~~—10N KN/m2

[1C

Table 7. Deviator stress and pore pressure wish respect to vertical displacement in the case (Y= 0°).

Q8 SBT4
Displacement
Deviator stress pore pressure Deviator stress pore pressure
-0.2000.10-2 29.90 -9.804 29.70 -13.14
-0.4000.10-2 59.80 -19.61 59.40 -26.27
-0.6000.10-2 89.71 -29.41 89.09 -39.41
-0.8000.10-2 119.6 -39.22 101.61 -40.08
-0.1000.10-1 120.9 -39.65 105.92 -39.99
-0.1200.10-1 121.0 -39.66 110.35 -39.92
-0.1400.10-1 121.0 -39.66 114.99 -39.85
-0.1600.10-1 121.0 -39.66 119.43 -39.82

Table 8. Deviator stress and pore pressure with respect to vertical displacement in the case (Y= 30°).

Displacement Q8 SBT4
Deviator stress pore pressure Deviator stress pore pressure

-0.2000.10-2 29.90 -9.804 29.70 -13.14
-0.4000.10-2 59.80 -19.61 59.40 -26.27
-0.6000.10-2 89.71 -29.41 89.09 -39.41
-0.8000.10-2 119.6 -39.22 108.37 -34.73
-0.1000.10-1 129.9 -29.60 123.59 -28.86
-0.1200.10-1 143.9 -23.63 139.13 -23.26
-0.1400.10-1 157.0 -16.83 154.99 -17.70
-0.1600.10-1 170.3 -10.22 171.03 -12.18
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4. Conclusion

In this study, a four nodes triangular membrane finite element based on the strain approach having the two
translations at each node (SBT4) is formulated for the static, nonlinear and free vibration analysis.

This type of strain-based element was implemented into the commercial code ABAQUS using the user
element subroutine (UEL).

Several tests were considered as validation tests in this study, and the obtained numerical results were
compared to known analytical or numerical solutions from the literature as well as some elements of ABAQUS.

Based on the numerical results of the problems tested, the present element SBT4 shows satisfactory

agreement when compared with other robust elements.

Appendix

For the case of plane stress problem, the elasticity matrix [D] is:

. 14 0
Dl=— 1 0
[ ] (1_V2) v .
0 0 ¥
L 2 |

For the case of plane strain problem, the elasticity matrix [D] is:

@-v) v 0
[D]Zm 1% (1_V) 0
vIUL—4v
0 0 (1—221/)
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