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Abstract 

This article presents the design of a control approach based on the continuous-time 

predictive control model (MPC) with prescribed degree of stability, the Takagi–Sugeno 

fuzzy model, and the Laguerre functions. This controller is offered to improve the 

transient stability and voltage regulation of multi-machine power systems. We first 

used the Takagi–Sugeno fuzzy model. It is a strategy for converting a nonlinear system 

into a linear system so that linear control techniques can be applied. Model Predictive 

Control (MPC) is an advanced control scheme based on optimal control. Laguerre 

functions are used to approximate the control signal to reduce the high computational 

cost of this technique. The proposed controller is also designed to acquire a wider 

stability margin through the implementation of the concept of the prescribed degree 

of stability. This approach will allow the poles of the closed-loop system to be assigned 

to the desired locations in the left half of the S-plane. The proposed approach is 

applied to the two-generator infinite bus power system.  This multi-machine power 

system is chosen to highlight the effectiveness of the proposed approach in improving 

transient stability and voltage regulation with respect to the various imposed faults. 
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1. Introduction 

Modern electrical networks are huge and complex systems, whose management must be safe, 

reliable and economical [1]. Maintaining transient stability and voltage regulation are fundamental 

requirements when operating an interconnected electrical system, since it concerns the ability of 

this system to withstand severe disturbances while ensuring the perpetuation of service. 

In recent years, much attention has been paid to the application of advanced control techniques 

to improve the transient stability and voltage regulation of multi-machine power systems [2-8]. 

This is mainly due to the impact of changes in operating conditions: variations in 

production/load with the possibility of the appearance of various disturbances which can affect 

the stability and quality of the energy. 

A new control technique among the advanced control methods, has appeared and aroused great 

interest, whether in the field of academic research or in practical applications. This technique is 

the Model Predictive Control (MPC) algorithm [9-14]. This technique uses the process model to 

predict the future behavior of the controlled system by solving a potentially constrained 

optimization problem. Optimization is an inherent capability of an MPC controller. The 

combination of prediction and optimization is the main difference with classical control 

approaches, which use precomputed control laws. 

The MPC technique has proven its effectiveness also in the control of electrical power systems. 

In [15], a deep Koopman model predictive control (MPC) strategy is used to improve the 

transient stability of power grids.  The deep neural network method is employed to map the 

original nonlinear dynamics into an infinite dimensional linear system. The MPC strategy should 

handle high dimensional linear system. To improve the transient stability of the power system, a 

coordinated control structure is proposed in [16]. This technique is based on two MBC 

controllers (tube-based MPCs technique) and aims to determine the control signals of the 

excitation system of the synchronous generators and the steam turbine. Bonfiglio et al. in [17] 

proposed a decentralized and optimal emergency control strategy operating on the mechanical 

power in order to ensure the transient stability of the electrical network. This controller is an 

explicit MPC.  The control laws employed are Piecewise affine (PWA) functions based on 

general polytopic partitions. This technique is often prohibitively complex for fast systems such 

the power systems. 

A distributed model predictive control-based load frequency control (MPC-LFC) scheme was 

proposed in [18], to improve the performance of the frequency regulation of power system. The 

orthonormal Laguerre functions are employed to estimate the predicted control trajectory. 
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Inspired by these approaches, this article aims to use MPC to address the complex problem of 

transient stability and voltage regulation of a multi-machine power system that exhibits a 

naturally nonlinear dynamic. With this control technique, we will calculate the optimal future 

behavior of the electrical system in order to ensure the stability of the system even in the 

presence of faults. 

To smoothly deal with the nonlinearity problem of the multi-machine power system, so-called 

Takagi–Sugeno (T-S) fuzzy models are generally used [19-20]. In the literature, T-S fuzzy logic 

and model predictive control via PDC approach applied to discrete-time nonlinear systems have 

received great attention from researchers [21-23]. However, it is well known that the continuous-

time model is more suitable for the exploitation of physical systems. Therefore, the use of the 

continuous-time MPC model is more appropriate when applied to industrial processes [24]. 

This article focuses on the use of the continuous-time MPC strategy based on the Laguerre 

function to improve the transient stability and voltage regulation of a multi-machine power 

system. This controller is designed to be an optimal controller with a prescribed degree of 

stability. The prescribed degree of stability criterion is used to guarantee a certain rate of 

convergence. The continuous-time MPC algorithm is introduced using the Parallel Distribution 

Compensation (PDC) method. The global controller is constructed by combining local MPC 

controllers through fuzzy inference. 

The performance of the proposed control scheme is evaluated through simulations on a two-

machine infinite bus power system. The continuous-time MPC is applied as a decentralized 

controller since only local measurements are used. 

 The article is structured as follows: Section 2 discusses the T-S Fuzzy model and control power 

system. Section 3 describes the design of the continuous-time model predictive control with a 

specified degree of stability based on Takagi-Sugeno fuzzy logic. Section 4 will present the 

simulation results. In the final section, some conclusions are discussed. 

2. Fuzzy model and Control of Power System  

2.1 T-S Fuzzy model of power system 

The primary objective of this article is to perform the voltage regulation and achieve transient 

stability of "c" generator of a multi-machine power system. This nonlinear system can be 

converted into a closed-loop linear dynamic system with the Direct Feedback Linearization 

(DFL) approach. This aim can be achieved by employing the state vector. 

( ) ( ) ( )
T

mk tk k ekV t t P t =    x  (1) 

where 

( ) ( ) ( ) ( ) ( ) ( )0 0; ;tk tk tk k k ek ek mkV t V t V t t P t P t P   = −  = −  = −  (2)  

The DFL-compensated model under review is as follows: 
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 = −  − 


 = −  +


       (3) 

with 

( )
( ) ( ) ( )

( ) ( )

( )
( )1

' '2 ' '1 1dk kk qk kk ek tqk dk dk kk

k

tk qk tk

x B E B Q t V t x x B
f t

V t I t V t

 + − − + = − −   (4)          

( )
( ) ( )

( ) ( )2

'1 dk kk tqk

k

tk qk

x B V t
f t

V t I t

+
= −              (5) 

From (4) and (5), it is clear that ( )
1k

f t and ( )
2kf t are extremely nonlinear functions. But they 

operate in a defined domain, they depend on the operating conditions. The following restrictions 

are used: 

1 2

1 2

1 1

2 2

   3.526   0.259 ;  0.266  3.794

2.832    0.233 ;  0.241    3.670

f f

f f

−   −  

−   −  
 

The DFL compensating law considered is 

( )
( )

( )( ) ( ) ( )( )' ' '1 1
fk fk dok qk qk mk dk dk dk

ck qk ck

u t v t T E I P x x I t
k I t k

= − + + −  (6) 

where ( )fkv t is the feedback control law to be evaluated 

( ) ( ) ( ) ( )
tk k ekfk V tk k P ekv t k V t k t k P t = −  −  −  (7) 

and ωk(t) the relative speed of the k-th generator, in rad/sec; Pmkthe mechanical input power, in 

p.u.; Pek (t) the electrical power, in p.u.; ω0  the synchronous machine speed, in rad/sec ,ω0 =2πf0; 

Dk   the per unit damper constant; Hkthe inertia constant, in sec.E'qk(t) the transient EMF in 

quadrature axis, in p.u.; T′dok  the direct axis transient open circuit time constant, in second; Vtk  

the generator terminal voltage , in p.u.; xdk  the direct axis reactance, in p.u.; x'dk the direct axis 

transient reactance, in p.u.; Idk the direct axis current, in p.u. ; Iqk the quadrature axis current, in 

p.u. ; ufk the input of the SCR amplifier; Yij=Gij+jBij the i-th row and j-th column element of 

nodal admittance matrix, in p.u.; Qekthe reactive power, in p.u. 

The mathematical parameters of this model as well as the physical hypotheses are reported in 

[8,18-19]. 
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To develop the fuzzy T-S model, we use the sum of the products of linearly independent 

functions [18-19]. Indeed, the DFL-compensated model (3) can be represented by 

( ) ( )
0

2

1 l lmk k k k kl
t f t

=
 = +
 x F F η             (8) 

Where  ( ) ( ) ( ) ( ) ( )
T

k tk k ek fkt V t t P t v t  =        (9) 

0 1

2

0

' '

0 0

' '

0 0

0 0 0 0 0 1 0 0

0 2 2 0 ; 0 0 0 0 ;

0 0 1 1 0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0

k k k k k

d k d k

d k d k

k

F D H H F

T T

T T

F



   
   

= − − =   
   −   

 −
 

=  
 
 

(10) 

The state and the input matrices 
imkA , 

imkB are developed as 

1 1 0 10 1 20 2 2 2 0 10 1 21 2

3 3 0 11 1 20 2 4 4 0 11 1 21 2

,

,

mk mk k k k k k mk mk k k k k k

mk mk k k k k k mk mk k k k k k

A B F f F f F A B F f F f F

A B F f F f F A B F f F f F

   = + + = + +   

   = + + = + +  

 

It is assumed that ( )
i imk mkA B is a controllable pair.  

Four fuzzy rules are employed in this instance.  

Plant Rule i: 

( ) ( )

( ) ( ) ( )

( ) ( )

1 21 2

, 1,..., 4;

1,..., ; 0,1,

p p

i i

i

mk mk

i i

k k

mk mk k

mk mk mk

IF t is M and t is M

t t t i
THEN

t k c p

z z

t

= + =

= =




=

x A x B u

xy C

(11)                                       

Whereuk(t) is the control vector. ymkand
imkC  are the output vector and the output matrix 

respectively.  ‘c’ is the number of generators in the multi-machine power system.  

( ) ( ) ( ) 1 2,t z t z t=z are recognized as premise variables (in our case ( ) ( )
11 kz t f t= and 

( ) ( )
22 kz t f t= ) and 

lp

i

kM is the fuzzy set ‘lp’ in rule ‘i’ for the generator ‘k’. 

The membership functions 
0lkM and 

1lkM are identified as 

( )( ) ( )( )( ) ( )

( )( ) ( )( )( ) ( )
0 1 1 0

1 0 1 0

1,2.

1,....,

l l l l l

l l l l l

k k k k k

k k k k k

M z t f f z t f f l

M z t f z t f f f k c

 = − − =


= − − =

(12) 
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Several linear models are interpolated to establish the global fuzzy model.  

( ) ( )( ) ( ) ( )( )
4

1 i i imk k mk mk mk ki
t h t t t

=
= +x z A x B u            (13) 

The output is inferred as follows: 

( ) ( )( ) ( )
4

1 i imk k mk mki
tt h z t

=
= xy C       (14)                                 

where: 

1 10 20 2 10 21 3 11 20 4 11 21
, , ,k k k k k k k k k k k kh M M h M M h M M h M M= = = = (15) 

2.2 Fuzzy T-S PDC Controller of power system 

The PDC's fundamental idea is straightforward. Each fuzzy control rule is derived from the 

relevant T-S fuzzy model rule (11), as indicated in (16) 

Control rule i: 

( ) ( )

( ) ( )

1 1 2 2
1,..., 4;

1,..., ; 0,1

p p

i

i i

k k k k

k mk mk

f t is M and f t is M i

k c p

IF

THEN t t

=

= == −u K x
(16) 

where 
imkK is a linear state feedback gain for the i-th fuzzy subsystem.  

For the T-S model (13), the inferred PDC controller is designed as 

( ) ( )( ) ( )
1 i i

r

k k mk mki
t h t t

=
= −u z K x               (17)                                   

From (13) and (17), the resulting closed-loop control system is determined as follows 

( ) ( )( ) ( )( )( ) ( )
1 1 i j i i j

r r

mk k k mk mk mk mki j
t h z t h z t t

= =
= − x A B K x (18) 

3. Model Predictive Control using Laguerre Functions with a Prescribed degree of  

stability based on T-S Fuzzy logic  

3.1 Model Structure of the Continuous-Time Model Predictive Control system 

This section will discuss the problem formulation of the continuous-time predictive control 

model based on the Takagi-Sugeno (T-S) fuzzy system with a specified degree of stability.As 

know, the T-S fuzzy model can be used to describe a local linear system using IF-THEN fuzzy 

rules to represent a nonlinear system. For a continuous fuzzy system, the i-th rule of the T-S 

fuzzy models is given as follows [25] 

( ) ( )

( ) ( ) ( )

( ) ( )

1 1 ...

,
1, 2,...

,

p

mi mi

i i

p

m m

m mi m

IF z t is M and z t is M

t t t
THEN i r

tt

= +
=




=

x A x B u

xy C

      (19)                                             
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where xm(t) is the state vector of dimension ‘n1’. In (19), ,
mi mi

BA and 
mi

C  dimension are 
1 1n n , 

1n m and 
1q n , respectively. 

To establish the predictive model based on (19), we define the following auxiliary variables [26] 

( ) ( )mw t x t= and   ( ) ( )mi my t C x t=    (20) 

The new state variable vector is chosen as ( ) ( ) ( )
T

t w t y t =  x . With these auxiliary variables, 

the augmented state-space model obtained for the i-th rule is as follows 

Plant Rule i: 

( ) ( )

( ) ( ) ( )

( ) ( )

1 1 ...

,
1, 2,... .

,

p

i i

i i

p

i

IF z t is M and z t is M

t t t
THEN i r

tt

= +
=




=

x A x B u

xy C

       (21) 

Where , ,
i

T
mimi m

i i m q q

q mmi q q





   
 = = =     

    

A
BA

B C I
C

0
0

00
 

and
m0 is a q×n1 zero matrix, q q0 is a q×q zero matrix, q m0 is a q×m zero matrix, and q qI is the 

identity matrix with dimensions q×q.  

The continuous-time Takagi-Sugeno fuzzy model of the model predictive control system is 

represented as 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

1

1

r

i i ii

r

i ii
t

t h z t t t

t h z t

=

=

 = +


=



 x

x A x B u

y C
        (22) 

3.2 PDC Controller Design for the Continuous-Time Model Predictive Control 

System using Laguerre Functions with Prescribed degree of stability 

The design principle of the continuous-time model predictive control (CMPC) is very similar to 

the one used in the T-S Model-Based fuzzy control system. The overall control is denoted as 

follows: 

( ) ( )( ) ( )
1

r

i ii
t h z t t

=
= −u K x             (23) 

Here, it suffices to integrate to extract the control law [22] 

( ) ( )
0

t

t d u = u                      (24) 
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The feedback gain  Ki is calculated using the lowest value of the objective function J, as shown in 

(25): 

( ) ( ) ( ) ( )( )
0

Tp

T TJ t t t t dt= + x W x u R u              (25) 

The penalty on states and input energy are expressed by the matrices W and R, respectively. The 

weight matrix R is positive definite symmetric, it is determined as a diagonal matrix, where each 

element weighs the corresponding control signal. Whereas Q is symmetric, constant, and non-

negative matrix. 

As is well known, when the prediction horizon ‘Tp’ is large, the model predictive control 

algorithm becomes numerically ill-conditioned. To solve this issue, the exponential data 

weighting strategy [27] is used. 

The optimization will be ensured with a prescribed degree of stability. To be able to minimize 

the quadratic performance index (25) and, at the same time, to ensure that the poles of the 

closed loop are to the left of a line Re (s) = - β, for an β > 0, it suffices to consider the following 

new variables. 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, ,t t tt e t t e t t e t  = = =x x u u y y        (26)     

The problem of minimizing (25) is identical to the issue of minimizing the objective function: 

( ) ( ) ( ) ( )( )2

0

ˆ
pT

t T TJ e t t t t dt= + x W x u Ru       (27) 

The objective function is then represented by  

( ) ( ) ( ) ( )( )
0

ˆ ˆ ˆ ˆ ˆ
pT

T TJ t t t t dt= + x W x u Ru              (28) 

Subject to  

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )

1

1

ˆ ˆ ˆ

ˆ ˆ

r

i i ii

r

i ii

t h z t t t

t h z t t

=

=

 = +

 =





x A x B u

y C x

         (29) 

Where i i n = +A A I  and  is the desired prescribed degree of stability. The overall control law 

is expressed as: 

( ) ( )( ) ( )
1

ˆ ˆ
r

i ii
t h z t t

=
= −u K x              (30) 

From (29) and (30), the closed loop control system is defined as follows 
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( ) ( )( ) ( )( )( ) ( )
1 1

ˆ ˆ
r r

i j i i ji j
t h z t h z t t= =
= x A - B K x     (31) 

Remark 1:  

We deduce from (26) that ( ) ( )ˆtt e t−=x x , this means that x(t) decays at least as fast as the rate 

of 
te −
 [26]. 

The feedback gain matrix Ki for the lowest value of Ĵ is defined as 

( )

( )

( )

1 2

11 2

1 2

0

0

0

T

m

T

m
i i i

T

m

L o o

o L o

o o L

 −

 
 
 

=  
 
 
 

K        (32) 

where ( )1 0L , ( )2 0L ,….. ( )0mL  are the initial conditions of first, second, third, …, and m th 

inputs, respectively. They are expressed as: 

( )  0 2 1 1 . . . 1
T

g gL p=            (33) 

It is a column vector of ‘Ng’ elements, in which ‘Ng’ defines the number of Laguerre networks 

(g=1, …, m). pgdenotes the scaling factor for Laguerre functions. The row vector og contains zero 

elements and has a dimension identical to ( )0
T

gL . 

The matrices Ωi and ψi are constant. They are formulated as: 

( ) ( )

( )

0

0

i

M
T

i i i L

k

M
kh

i i

k

kh W kh h R

kh W e h

 



=

=


 = +


 =





A

               (34) 

M is the number of samples; it is denoted as: pM T h=  where h is the sampling interval within 

the optimization window,Tp is the prediction horizon.  

( )
T

i kh is the Linear Algebraic Equation (LAE) solution.  

( ) ( ) ( ) ( )0i

g

T T T TkhT

i i i p i g i gkh kh A B L kh e B L

  − = − +
A

A   (35) 

where ( )gL kh is the set of Laguerre functions, denoted as  

( )
( )

( )0
pg

kh

g gL kh e L=
A

                  (36) 
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And  
gpA is a lower triangular matrix of (Ng× Ng) order and it is formulated as 

0 . . . 0

2 . . . 0

. . . . . .

. . . . . .

. . . . . .

2 . . . 2

g

g

g g

p

g g g

p

p p

p p p

− 
 
− −
 
 

=  
 
 
 
− − −  

A     (37) 

RL is a block diagonal matrix. It contains Rg number of block diagonal matrices such that (
g gN NI 

 

is the identity matrix with order of ( g gN N ). 

3.3 Asymptotic Stability of the Continuous-Time Model Predictive Control System 

This section addresses the equivalence between the proposed controller (model predictive 

control with a prescribed degree of stability based on the Takagi-Sugeno fuzzy control system 

and Laguerre functions) and the classical optimal fuzzy control (model predictive control with a 

prescribed degree of stability based on the Takagi-Sugeno fuzzy control system). 

The stability conditions of the classical optimal fuzzy control system are derived from 

Lyapunov's stability theory and a set of LMI-based stability conditions are derived to establish 

the conditions under which the closed loop system (31) ensures asymptotic stability with the 

control law (30). 

Theorem 1. Feedback gains that ensure minimization of the upper bound of the performance 

function  

( ) ( ) ( ) ( )( )
0

ˆ ˆ ˆ ˆ ˆT TJ t t t t dt


= + x W x u R u               (38) 

can be obtained by solving the following LMIs  

1

minimize  

                       , ,.......,  

0,

r

subject to





Q Y Y

Q

 

( )
( )

1 0
0

0

T 
 

 

x

x Q
              (39) 
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( )

( )

0 0

0

T T T T T

i i i i i i i i

i

i

 





 + − −
 
 − 
 

− 
 

QA A Q Y B BY QC W Y R

W C Q I

R Y I

    (40) 

2

0 0 0

00 0 0

0 0 0

0 0 0

T T T T

i i j j

i

i

j

j

Q I

I

Q I

I









 
 

− 
 

− 
 

− 
 − 

T QC W K R QC W K R

W C

RK

W C

RK

    (41) 

Where ( ) ( )2

T T T T T T

i i j j j i i j i j j iT    = + + + +QA A Q+ QA A Q - Y B BY - Y B B Y  

The feedback gains are obtained as 

1

i

−=iK YQ                (42) 

for all isince -1=Q P . and the performance index satisfies 

( ) ( )ˆ ˆ ˆ0 0TJ  x P x               (43) 

The prediction horizon Tp is generally considered to be large enough so that state variable 

predictions are numerically correct. However, the model predictive control algorithm becomes 

numerically ill-conditioned in this case. The exponential data weighting strategy is used first to 

eliminate the numerical ill-conditioning problem from the design, in second to provide a design 

that leads to asymptotic closed-loop stability, and finally to achieve a solution with a specified 

degree of stability. which means that the results given by the model predictive control with a 

prescribed degree of stability are equivalent to those of the fuzzy optimal control with a 

prescribed degree of stability. 

4. Simulation  

The simulation results are exhibited in this section to demonstrate the efficacy of the proposed 

technique for transient stability enhancement and voltage regulation of multi-machine power 

system. The multi-machine benchmark network used is the two-machine infinite bus power 

system.  Figure 1 depicts the one-line diagram for this system. 
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Fig. 1. Two machine infinite bus example power system. 

The proposed technique aims to optimize the control action of the generator excitation systems 

in the multi-machine power system. Since each local controller solves its own optimal control 

problem using only local measurements, they are referred to as decentralized controllers. 

References [8,18-19] provide additional information about the system under consideration. 

The initial conditions for the different cases are included in Table 1. 

Table 1. Initial conditions. 

 Machine  ( )  ( ).mP p u  ( ).tV p u  

Case 1 1  52.72 0.95 1.00 

2  54.48 0.95 1.02 

Case 2 1  46.00 0.87 1.02 

2  44.69 0.86 1.1 

To validate the proposed control scheme, two different types of contingencies are proposed.  

 First contingency: The considered contingency is that two symmetrical three-phase 

short-circuit faults occur successively at the fault location λ = 0.06. The first fault occurs after 3s 

from the beginning of the simulation and it is cleared after 0.2 s by opening the line. The 

transmission lines are re-established at t = 4.5 s. The second one is introduced at 5.5 s and it is 

cleared after 0.2s. The system is in a post-fault state. 

 Second contingency: The considered contingency is a three-phase symmetrical fault 

occurring at the fault location λ = 0.05 after 3 s from the beginning of the simulation and it is 

cleared after 0.2s. This fault is followed by a 45% drop in mechanical power. The system is in a 

post-fault state. 
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Fig.2. System state responses of the generator 1 for the first contingency 

 

Fig.3. System state responses of the generator 2 for the first contingency 

Figures 2-5 shows the power angle, the terminal voltage and the control action of each machine 

of the considered contingencies. 

The faults considered have caused significant disturbances since the operating points have been 

modified. However, with the proposed MPC controller, it is clear that the system can withstand 

all of the considered contingencies. 

The objective of ensuring transient stability after the occurrence of faults is greatly improved 

since the power angles always keep constant values. And simultaneously, it is seen that the 

output voltages are kept fixed and the voltage drop was quickly rejected after the occurrence of 

symmetrical three-phase short-circuit faults. It can be noticed also that the power angles and 
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terminal voltages of the machines exhibit fewer post-fault oscillations with the proposed control 

scheme compared to the controller based on the fuzzy model of Takagi-Sugeno with pole 

placement (TS-PDC) [19]). 

 

Fig.4. System state responses of the generator 1 for the second contingency 

 

Fig.5. System state responses of the generator 2 for the second contingency 

In order to evaluate the ability of CMPC controllers to maintain the power angle and the 

terminal voltage as close as possible to the pre-contingency values, a comparative study of the 

performance of two control techniques (the proposed controller (TS-CMPC) and the TS-PDC 

controller) was carried out. 

Figures 6 and 7 summarize the results obtained for the squared integral error (ISE), the integral 

of the absolute error (IAE) and the integral of the time multiplied by the absolute error (ITAE) 

during the evaluation of the transient stability and voltage regulation of the multi-machine power 

system of the TS-CMPC and TS-PDC controllers. 
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The comparison results in Figures 6 and 7 show that the proposed CMPC controller 

outperforms the TS-PDC controller significantly. Indeed, for all contingencies considered, the 

proposed control scheme provides lower error values in terms of voltage deviation than the TS-

PDC controller. The proposed CMPC controller can greatly improve transient stability 

regardless of operating points and fault locations. 

 

Fig.6. Values of performance indices under different conditions for transient stability evaluation 

(a) and voltage regulation (b) for the first contingency 

 

Fig.7. Values of performance indices under different conditions for transient stability evaluation 

(a) and voltage regulation (b) for the second contingency 

5. Conclusion 

This article deals with the design of a decentralized nonlinear voltage control scheme based on 

continuous-time MPC strategy with a prescribed degree of stability. The main objectives of the 
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control scheme are to improve the transient stability and voltage regulation of the multi-machine 

power system. The proposed controller is designed to be an optimal controller with a prescribed 

degree of stability. A specific rate of convergence is ensured using the degree of stability 

criterion. The continuous-time MPC algorithm is integrated as a regulator in the multi-machine 

power system using the parallel distribution compensation (PDC) method. Indeed, the design 

principle of the regulator with the fuzzy model-based control system is used as the basic idea for 

the conception of this regulator. Laguerre functions are utilized in MPC design to lessen the 

computational load needed for control signal optimization. An extremely nonlinear multi-

machine benchmark network (the two-generator infinite bus example system) is used in 

computer simulation to show the controller's effectiveness. It was proven that the proposed 

decentralized controller maintains the overall stability of multi-machine power systems even in 

the presence of severe contingencies. Indeed, despite the change in initial operating points, 

mechanical input power, and fault sites, transient stability is noticeably enhanced, and the post-

fault voltage level is well appreciated. The comparative results between the proposed controller 

and the TS-PDC controller confirmed that the performance of the proposed MPC controller 

outperforms that of the second controller.  
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