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Abstract

The evolution of the disk is influenced by both internal viscous torques and external
torques brought on by one or more embedded planets. As planets form and grow
within gaseous protoplanetary disks, the mutual gravitational interaction between
the disk and planet leads to the exchange of angular momentum and migration of the
planet. The functional A(R)depends on the tidal dissipation distribution in the disk
which is concentrated in a vicinity ofthe protoplanets orbit. The aim of this work is to
solve the equation for the evolution of the surface density of the disk according to the
behavior of the angular momentum.
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1. INTRODUCTION

Understanding the evolution of protoplanetary disks and the intricate dynamics within them is
essential for unraveling the mysteries of planet formation and migration. These disks, composed
of gas and dust surrounding young stars, serve as the birthplace for planets. The interaction
between planets and the surrounding disk plays a crucial role in shaping their orbits and

determining their ultimate destinations within the planetary system.

Recent reviews have extensively covered the orbital evolution of planets resulting from their
interactions with the ambient disk [1]. The gravitational forces at play between a planet and the
disk can have profound effects on the planet's orbit. Not only can they stimulate or inhibit
orbital deviations, but they can also alter the size of the planet's orbit, leading to migration either
closer to or farther away from its host star [2]. Remarkably, these changes can occur rapidly, on a

timescale significantly shorter than the time required for planets to fully form.

When a planet traverses its orbit within the disk, it creates disturbances in the surrounding gas

and planetary material, giving rise to waves of spiral density. These density waves engender a
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delicate interplay between the forces exerted by the spirals within and outside the planet's orbit.

Consequently, an imbalance may arise, resulting in the planet gaining or losing angular
momentum [3]. Such changes in angular momentum have a direct impact on the planet's
motion within the disk. If there is a loss of motion, the planet tends to migrate inward, while a

gain in motion leads to outward migration [4-8].

The formation of gaps in the disk is another intriguing consequence of the interaction between
planets and the circumstellar material. As an accreting planet reaches sufficient mass, it creates a
gap in its disk. The massive planet and the circumstellar disk undergo tidal interactions, leading
to the transfer of angular momentum between them [1, 3, 4, 9, 10]. The motion of the planet
within the disk excites density waves both inside and outside its orbit, resulting in the clearing of

material and gap formation, ultimately terminating the accretion process.

The evolution of protoplanetary disks is driven by the viscous transfer of angular momentum by
the central star, and the evolution of gas surface density within the disk is described by a
diffusive-type equation [1]. In the context of disk migration, a giant planet gradually spirals
toward its host star due to tidal interactions within the protoplanetary disk, ultimately reaching

the inner edge of the disk [13].

This work aims to solve the equation governing the evolution of the disk's surface density based
on the behavior of angular momentum in different regions: R < a and R > a. Unlike previous
research, this study avoids making approximations on the angular momentum A(r), thereby
distinguishing itself [12]. In Section 2, we present the evolution equations of the protoplanetary
disk, along with the angular momentum calculation required for determining the disk's surface
density. Section 3 introduces the solution to the evolution equation based on the behavior of
angular momentum in different regions. Finally, the last section presents the significant findings

of this study, culminating in a comprehensive conclusion.
2. SPECIFIC ANGULAR MOMENTUM AND PLANET MIGRATION MODEL

We consider the total torque as the combination of three distinct resonance contributions:
Firstly, the inner Lindblad resonances generate a partial torque that induces outward migration.
Secondly, the outer Lindblad resonances contribute to inward migration. Lastly, the corotation
resonance also contributes to the total torque. However, it is challenging to predict the migration
direction accurately in analytical calculations due to the requirement of precise torque
calculations. Additionally, actual protoplanetary disks can exhibit turbulence, resulting in

fluctuating torques caused by turbulent density variations.

In this study, we present models that depict the migration of giant planets within evolving
protoplanetary disks, where the disk's angular momentum transport is influenced by the central
star's viscous effects. The migration of planets occurs in the Type II migration regime, primarily

driven by tidal interactions with the disk. Moreover, the disk is subject to tidal torques exerted by
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the planets [1]. The coupled evolution of the protoplanetary disk and planet is described by an

equation that accounts for their mutual influence and progression:
9% _ 1[3p1/2 9 1/2) _
at R[3R dR (T]ZR )

(1)

2AZR2/3]
(GM)1/2
Where Y(R,t) is the disk surface density, t is time, R is cylindrical radius, 1 is the kinematic
viscosity, and M is the stellar mass. The first term on the right hand side describes ordinary
viscous evolution of the disk [15] and the second term describes how the disk responds to the
planetary torque. Here A is the injection rate of angular momentum per unit mass into the disk.
Following [16] for a planet of mass M,, = qMin circular orbit at radius a, the torque distribution

has the form

A(R) =
2
“ISMBy4 if R<aq
2R Ap (2)
9°GM ‘R 4 .
ETE (Ap) if R>a
Where (Ap) is equal to greater of H and |R — a| whereas H is the scale-height of the disk.

3. SURFACE DENSITY EVOLUTION EQUATION

In our model, we will solve the equation of the evolution equation (2) and find values of torque
without numerical calculation solutions, in the special case where the viscosity is a radial power
lawn~R™ with n < 2 and by assuming a separable ansatz of the form} (R, t) = @ (R)exp(—At),
where A is real number and @(R) is an arbitrary function of R. This work has led to indications

of how the density wave propagation, the equation (1) can be rewritten as the differential

equation:
3 , 5 3
0= RZcp"(R>+<2n+§—jGi;jn) Re'(R) + <n2+g_%_%%+
- RZ) o(R) 6)
31

By making the change of variable R to ax, ¢(R)changes to u(x),n(R) to v(x),we find the

following equation that governsu (x)

2x v(x) 3v(x) u®) = 2x v(x) v(x) - Vxv(x) - 3v(x)

11(X) ! l ! "
0= 1;()() (3 2V x) _ 24/x l(X)) u' (%) n 3v (%) v'(x) 1(x) 2Vx lI(X) +

(4)

3v(x)
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Where:

3
Aaz az dA

I(x) = 2= I'(x) = =%

We will solve the equation (4) in each region (x < 1land x> 1) by giving appropriate

parameters in each region. This is the subject of the following two subsections.
3.1 IN THE REGIONIR<ax<1

The equation (4) has a generic form as:

u" () + 0w () + fo(ulx) =0 )
Where fo(x) andf; (x) are respectively given by:

Bvx)  vrx) 1(x)
2x v(x) v(x) V() 3v(x)

fo = U0 + 505 ©

_3 vI(x) 2Vx
fl - +2 v(x) 3v(x) l(x)
7)
To solve the equation (4) put the change:
C))
ul) = e
(8)

After simplifications, it is traight forward and easy to get

Zq’(x) w (x) _a (x) q'(x) a@|_
YO 4 (10 - D)D) - L4 (L) f LD
By using
_24') _g
fi(x) 0 x
(10)

where g is a constant to be determined later. When we replace f; in the last equation, we can find

q(x), that is to say

q9() = exp (31 “£1(6)d0 — in(x))
(1)

¢ =E2- L))
(12)
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" " ()
q (x) = [(f—lzx +i) + (f1(x) ]CI( )

2x2

(13)

Then the equation (8) transforms to

" I} 2
w' (x) + %W’(x) + [fo(x) - qq(g) +2 (2((;))) )q (x)] w(x)=0
(14)
w' (x) + %w’(x) +GOwx) =0
(15)

Where g is a free transformation parameter that we will use for our convenience later and

6 = fol) = T2 (L) 1, (0 L0

q(x) q(x) q(x)
(10)

Or equivalently, after using the formula (9) , (12 ) we find

f! (X) dC)) -2
G = folx) - L0 90

(17)

substitute the expressions offy(x) and f; (x) and f, (x)given above, we find

_ N (€)) a _ 2 Vx v’ () g(g 2)
G(x) = 16x2 3v(x) 3\/Ev(x) 3v(x) dx ( ) Z(x)l () Ty 3 v2(x )l( 0+
(18)
Replace now the viscosity v(x) by Sx# then:
_ A ,49@-2) 1 d _ 2 (B-1
G(x) = 16x2 + 3SxP + 4x2 sxP2 Lax l( ) 952x23-11 () + 3SxP+1/2 1)

(19)

Now, to solve the above differential equation (14), we discard the terms containing the tore 1(x)

in (19), that is to say:

_d P (B-1
= Xm(X) + = - 1(x)
(20)

This constraint has a twist advantage: the first is to have a freely expression of the tore 1(x) that
responds to the physical situation in our consideration. The second advantage is a purely
mathematical issue that allows as to have analytically the solution of the differential equation (9)

that governsu(x) via (8). Indeed, we have from the constraint (20).
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35xB-1
1) = 3CS+2vX
(21)
and
_ A g(g-1)
G(X) 16x2 + 3SxB + 4x2
(22)

Leading to get a simplified differential equation

" g1 3 A g(g-1) _
w' (%) + Ew (X)+(1exz+35xs+ = )w(x) =0

(23)

For lightrning we put

A

Y
(24)

4g(g—2)+3 T
16 -
(25)
We get
17 g._ r As _
w (x)+;w (x) + (x—2+x—ﬁ,)w(x) =0

(26)

Whose general solution is:

w;(x) = X <C1]p (2 2 o B/z) + C,Y, ( ‘/— B/z))

(27)

Where: p = %and Jp(x) and Yy, (x)are the well known Bessel’s functions. Then the

solution of the surface density in the region(x < 1)is u(x) = %

u(x) = xl%gexp (_%f xfl(z)dz + %ln(x)) <C1]p (2 % o ﬁ/z) Loy (ZJ— ﬁ/2>>
(28)

Or after replacing f7(z) by its expression (4) and the torque by its expression (21), we find
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) = G, xsgsf( . CS\/—)< (22{§x1_ﬁ/2> y Gy <2J— 1- 3/2))
(29)

By making the following considerations:

— 1. — N2 _ 4 G_ _ 1 G_ et o _2p_2 2JAs _
p—l,\/(l ) 411_3’61_ 10'5_300'5_15’65_ 3’3_3’ 2-p

% VA =6 (30)

B- -1
Then the reduced [(x) becomes: 1(x) = 3sxP71 _3Sx /3

3CS+2vX 2 vVx-1

2x /3

[x) = 5vx-1

(31)

Which is the torque that we have obtained, leading to the solution:

u(x) = —100.x_%(x — \/E) <] (1, 9x§) _ Y(11,‘Zx§)>
(32)

which is the surface density in our model that we have obtained and presented it in ( Fig 1).

surface density

x=R/a

Figure 1: The surface density in region I.

3.2 INTHE REGIONIR >ax>1
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Rewrite the general equation (4) as

fau" () +f00u'(x) + fo(x)u(x) =0

(33)
Where:
_3v® v I 2vx
0™ 2x v(x) v(x) Vxv(x)  3v(x) (X) T
A
3v(x) (34)
3 v’(x)
fl - + V(X)
3V(X)1( X) (35)
fz =
1 (36)

And v(x) = SxP. If we put:

u(x) = W(x)exp( ) ?g,i dx’ )

(37)
w'(x)+ F()w(x) =0
(38)
Such as
fold) _ 1 (AN _1(A0Y
Fx) = f2(%) (fz(X)) 2 (fz(X))
(39)

That is to say

s 2@ + S

F(X) _ 1(x) l ( )+ vz(x)

16x2 T 3Var(x) 3v(x)

3V(X) vz( )
(40)

By replacing the viscosity v(x) = SxPin the last expression of F(x), we find

1 ' A 2 (B-1)
1l(x)+3SxB 952 2[; 1l()+ B+ l()

3
F(x) =
l6x? 56,63 35.x

(41)

By using the same constraint on [(x) as in the regionl
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1 5 1 2 (B-1) _
_ll (X) +-§§;EE:IZ (X) - B+%Z(X) =0

x" 2 Sx
(42)

' (-1

l(x)+3531/2l2()_ l()
(43)
We find that

_ 3SxB
L(x) = 2x3/243CSx

(44)

In this regionll, if we take f =5/4, S =2/3and C = —0.97 , the corresponding [(x)

expression is

x5/4
2x 3/2 1.94x

1(x) =
(45)

The solution in regionll is then given by

Wy, = I(Kdz (4/1\/_( )3/8) +K1Y§ (4Af(x)3/8)>

(46)

' Vt
up(x) = wy(x)exp (—%f * (% +2 1;((:)) 32 © l(t)) dt)

(47)

Or after replacing wy; by (46) and the 1(x) (45), we find the solution in this region II as

() = 3 (L) (Klf (BE0%) +ay: (B2 )3/8)>

(48)
The constants K; and K, must satisfy the boundary conditions:

u(1) =0

Klj; <4;13:/§> I <4/1?:/7>

3

(5 )

]§(4iji) Y%(4lv7)

3
3

) = s (L2 (45)

(49)
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If we take 1 = EKZ we obtain

J2 ﬂszs/s
w0 =3 (1) (2 A
3
Yg(log—ﬁszWS)
3
I A
3
Such that J (10ﬁK2) — 0.63209.
3 9

For The mode K = 1 and for K; < 0, the surface density from our model, which correspond to
regionlI is presented in the ﬁg2.

- -
S [o)]
|

-
N
| -

surface density
o o o =
N [o7] (o] o

e
3¢ ]
.

o
o
i I

o

1,2 1,4 1,6 1,8 2,0
x=R/a

Figure 2 : The surface density in region II.
4. Results and Conclusion

In this paper, we describe the dynamics of a planet’s gravitational interaction with a
protoplanetary disk [1]. Figs. 1 and 2 show the behavior of the surface density , this expected
behavior followed by the formation of a planet at (R = a) inside the disk. Through these curves,
the density is very low near the planet (R = a), and it has a significant value away from the planet.
The gap is dened as the region in which the surface density is less than of what it would be if
there were no planet in the disk. This figure from our results correspond the approximation of

[1]. We presented an overview of a giant planet migration in evolving protoplanetary disks.
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The disks evolve as a result of the viscous transport of angular momentum, whereas planets
migrate as a result of type II migration. We performed the calculations using an torque caused by
the presence of a planet. We discovered solutions for surface density within a protoplanetary
disk. This solution is depicted in (Figure 1 and Figure 2), the surface density is very low near the

planet and has a significant value away from the planet.

Finally, we used the results of our solution of the evolution equation to contribute to the study
of planetary migration. In this paper, we have obtained an overview of gaseous proto-planetary
disk and embedded planet interactions. We found similar solutions in previous studies. What
distinguishes our work is the solution of the surface density equation for the protoplanetary disk
without using an angular momentum approximation. What the figures show in both regions

demonstrates the validity of our work.
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