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In the simulation of the MPPT technique, the MATLAB/Simulink was used because of the 

possibility of simulating mixed systems (continuous and discrete) the continuous system is 

used for the simulation of the different analog parts (Solar panel and DC-DC converter), the 

discrete system is used to simulate algorithmic tracking method by (P&O) (Figure3) [11]. 

Mathematicians have modeled each organ of the photovoltaic system, the PV generator, the 

DC-DC converter and the MPPT controller as we will see in sections A, B and C. 

 

Figure 4 shows the electrical circuit of single diode PV module. 

 

 

 

 

The equivalent electric circuit of a real photovoltaic module with a single diode delivers an 

electric current which can be written as follows [12]: 

 VPV IPV RS  
   

V  I  R 
IPV  I ph  I0 

 e aVT 1    PV PV S  (1) 
 

with, 

 
 


V  

NS  K T 
T 

q
 

RSh  

 
 

(2) 

The photocurrent is given by: 

Rs IPV 

G Id IRsh 

T Iph D Rsh VPV 



 

 

N pp 

I 

I  I  K  T  G
 
 

(3) 
ph ph,STC I 

 

And the reverse saturation current: 

 

GSTC 

I ph,STC  KI  T 
0 VOC ,STC  KV T 

(4) 

e 

For large arrays composed of 

become: 

aVT 

Nss  N pp 

1 

modules the previous equations of one and two 

  Nss    N    
 VPV  IPV RS  N    

    V  I  R     ss 

     pp  

 
PV PV S    N 

I  I  N  I  N   e aVT 1 
     pp  (5) 

PV ph pp 0 pp    N    



with, 

  RSh 
    ss 




   



Ipv : output current of photovoltaic module, 

Vpv : output voltage of photovoltaic module, 

Iph : photocurrent, 

I0 : reverse saturation current of diode, 

a : diode ideality factor, 

k : Boltzmann constant k  1.381023 J / K , 

T : p-n junction temperature, 

q : electron charge q  1.61019C, 

Ki : short-circuit current/temperature 

coefficient, 

Kv : open-circuit voltage/temperature 

coefficient, 

G : actual sun irradiation, 

GSTC : nominal sun irradiation (1000W/m2) , 

∆T : difference between Actual temperature and 

nominal temperature (25°C). 

The PV modules are of type BP-MSX120, their characteristics are given on the Table 1. 

Table I. Datasheet parameters of the PV module 

BP SOLAR MSX 120 

Maximum Power Point (Pmax) 120 W 

Voltage at Pmax (Vmp) 33.7 V 

Current at Pmax (Imp) 3.56 A 

Open-circuit voltage (Voc) 42.1 V 

Short-circuit current (Isc) 3.87 A 

Series resistance (Rs) 0.473 Ω 

Shunt resistance (Rsh) 1367 Ω 

Ideality factor (n) 1.3977 

Temperature coefficient of Isc (ki) (0.065±0.015) %/°C 

Temperature coefficient of Voc (kv) -(80±10) mV/°C 



 

 

diL t 

 

Temperature coefficient of power -(0.5±0.05) %/°C 

NOCT 47±2 °C 

Number of cells connected in series (ncs) 72 

The 

5: 

IPV VPV and PPV VPV curves of a typical photovoltaic module are shown in f Figure 
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Figure 6 shows the used DC-DC boost converter with MPPT controller by perturb and 

observe (P&O) algorithm. 

The following equations are obtained from Fig. 3 when the switch is open. The peride T ∈ 

[DTs, Ts]: 

i t   C 
dvi t  

 i t   i 
 

t  (6) 
c,in in 

 

i t   C 

dt 

dvo t  
 i

 
 

L 

 

t   i 

 
t 


(7) 
c,out out 

dt 
L o 

 

v t   L  v t   v 
 

t  (8) 
1 

dt 
i o 

The conversion ratio M (D) of an ideal boost converter is given on the expression (9): 
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The conversion ratio M (D) of an ideal boost converter is given on the expression (9): 

M D  
vo  M D  

vo  
1 

 
1
 

   

(9) 
vi vi D ' 1 D 

This transistor controlled by the (P& O) algorithm aims to tracking the maximum power 

point MPPT. The latter is then controlled using a MPPT controller with the (P&O) algorithm, 

as shown in Figure 7. 

 

This method is based on the    conversion to remove the real and imaginary powers. 

Given  that   v , v   and   i , i   are the orthogonal components of the    reference 

associated respectively with the connection voltages of the parallel active filter vs  and the 

currents absorbed by the polluting loads iL  . In order to calculate the real and imaginary 

power, this method uses the    transformation. 
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vs   

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

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


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isa 

is   

isb 



isc 



(10) 

The three-phase to two-phase transformation of instantaneous voltages and currents is as 

follows: 

The voltages: 

     
1   

1  
1    

vsa 


vs   2 2    



v   

      vsb  (11) 
 s  

0 
3 
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3   
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


and the currents: 


 

2 2  


 sc 

     
1  

1  
1  
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
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3  
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
 

2 2 


 Lc 

Expression (13) represents the active and reactive powers: 

 p 
 
 vs vs  

 
iL  (13) 

 q  

vs

 vs 
 

iL 



     

If the phase equivalent voltages and currents replace their two-phase equivalents, then: 

Mesure Vpv(k), Ipv(k) 

Ppv(k)=Vpv(k).Ipv(k) 
 

Ppv(k)=Ppv(k)-Ppv(k-1) 
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p  vS  iL  vS  iL
 (14) 

 

 

 

 

 
from (13), asking: 
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 q  vS   iL   vS   iL

p  vSa  iLa  vSb  iLb  vSc  iLc 

vSa   vSb  iLc   vSb   vSc iLa   vSc   vSa iLb 





(15) 

 
 

we have: 

  v2 
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
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with, 
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


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Along axes  and  , the instantaneous powers are given by: 

 p  
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
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q 


(21) 

From (15), we can write: 

p  p p  p p  pq  pq   p p  pq 

 

(22) 

where p and q express the active and reactive powers which are defined by: 

 p  p  p 

 (23) 

or, p and q represent the continuous active and reactive powers related to the fundamental 

component of the current; p and q   represent the alternating active and reactive powers 

linked to the sum of the harmonic components of the current. 
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Figure 8 represents the P-Q method expressing the extraction of harmonic currents 

[13]. 
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Figure 8. "P-Q" method - Extraction of Harmonic Currents 

 

ANN is trained by three steps, namely the architecture, the training algorithm and its 

activation function. The activation functions are ensured only by activation while each 

neuron is connected to the other. The NNA runs a sentencing standard intended to make the 

system robust [14]. 

Figure 9 shows the multilayer perceptron (MLP) which is used for harmonics attenuation 

and it consists of three inputs as shown in the model of the figure. The rapid estimation of the 

Fourier coefficients equivalent to the harmonics is an advantage of ANN [15]. The 

application of data trained by Levenberg Marquardt (LM) helped us to use the Back 

Propagation (BP) algorithm for the simulation. For layer 1, the transfer function is “logsig”. 

While For layer 2 or hidden layer, the transfer function is “tansig”. There are 3 neurons in the 

first layer and 10 neurons in the second layer. For desired optimal results, the output layer 

depends on the type of data to be analyzed. 
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Figure 9. Artificiel Neural Networks structure
 

 
Figures 10 to 13 represent different results of PV system used with parameters shown in 

Table 1 and number of modules in series 19 and in parallel 10. 
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In order to model and test the system under the MATLAB/Simulink environment, using the 

P-Q algorithm method, with PI then ANN controllers. Table 2 shows the parameter values of 

the system: 

Table 2. Simulation parameter values 

Parameters Values 

Supply’s voltage vS and frequency f 220Vrms, 50 Hz 

Line’s inductance Ls and resistance Rs 19.4 H, 0.25 mΩ 

DC link’s inductance Ldc, resistance Rdc 20 mH, 6.5 Ω 

Load inductance LF 1.5 mH 

DC link voltage Vdc, 

Coupling inductance LFa, resistance RFa 

840 V 

1.5 mH, 5 mΩ 

Figure 14 shows the different simulation results of the shunt Active Power Filter (SAPF) 

system by applying two control strategies. The first is classical; it is the Proportional-Integral 

(PI) regulator. The second is modern; it is the regulator by Artificial Neural Networks 

(ANN). Each is in cascade with the P-Q method. Figure 1 has allowed us to compare the 

characteristics between the two techniques. 

Before starting the discussion of the results obtained, we must note that we did both 

simulations before and after filtering in the same illustration via a switch that closes at the 

instant 1 s in a range of 2 s. 

First, we presented the three supply voltages vS,abc offset by an angle of 2/3 and have an 
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amplitude of 220 . The waveforms are sinusoidal as shown in the Figure (1.a). 

After, we find that the source current iSa is improved after shunt active filtering became 

almost sinusoidal after it was deforming iLa. The iSa waveform in the ANN control is closer to 

sinusoidal than in PI control. This indicates the effectiveness of artificial intelligence in 

parallel active filtering. 

The Total Harmonic Distortion (THD) is decreased from 20.16 % to 3.12 % for the PI 

regulator and to 1.19 % for the ANN regulator. The zoom clearly showed us the 

disappearance of multiple harmonic order of 2 and 3. 

We thus note that the phase difference between the supply voltage vSa and the source 

current iSa is better than the phase shift with the load current iLa. That is, it gets closer to unity 

especially with the regulator by neural networks. 

Figure (1.f) shows the filter current iFa and its reference iFa
*. We observe that the current 

iFa is zero before putting the SAPF in service between 0 and 1 s. After 0.1 s, the current iFa 

follows well the trajectory of i * especially with neural networks as shown by the zoom 

between 0.18 s and 0.2 s. 

Finally, Figure (1.g) shows the three currents of the shunt active filtering system. We can see 

that the load current iLa corrected by the filter current iFa, so that the source current iSa 

becomes sinusoidal. 
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Figure 14. Comparison between PQ-PI and PQ-ANN of SAPF powered by a PV system 

 

In this paper, we have represented the simulation results of the filter powered by a source 

of renewable origin (PV) and controlled by the P-Q method in cascade with the PI controller 

then ANN respectively. The simulation of the shunt active filtering system by supplying the 

inverter with a photovoltaic source, it has been found that the PV system delivers a stable 

voltage Vdc at the value 840 V since the system has been optimized by the MPPT command 

with the perturb and observe (P&O) method. Then the THDiLa  20.16% decreased to 

THDiSa PI   3.12% and THDiSa  ANN   1.19% which is better than the previous regulator. 

These results are very  reasonable  and acceptable  by the  low voltage electrical network 

according to international recommendations which requires THD less than 5%. 
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