Clinical efficacy of cefoperazone-sulbactam in patients with acute myocardial infarction complicated with infection and effects on serum procalcitonin and serum inflammatory indicators Running tittle: Cefoperazone-sulbactam in acute myocardial infarction complicated with infection

Shan Wang Xiaohua Zhao Wenbao Sun

> Abstract This study aimed to investigate clinical efficacy of cefoperazone-sulbactam in patients with acute myocardial infarction complicated by infection and effects on serum procalcitonin and serum inflammatory indicators. Prospective analysis was used in this study. A total of 109 cases of patients with acute myocardial infarction complicated with infection were collected. They were admitted to our hospital from August 2018 to September 2019 and were divided into a control group and an experimental group according to different treatment methods. Patients (53 cases) in the control group received treatment of cefoperazone, while patients (56 cases) in the experimental group received treatment of cefoperazone-sulbactam. Therapeutic effect, bacterial clearance rate and adverse reaction of the two groups were compared. Serum procalcitonin (PCT) and serum hypersensitive C-reactive protein (hs-CRP) levels were observed and compared. ROC curve was used to analyze the predictive value of PCT, hs-CRP for the treatment of acute myocardial infarction complicated by infection. Logistic regression analysis was used to analyze the risk factors for the effect of acute myocardial infarction complicated by infection. The effective rates and bacterial clearance rates of treatment in the experimental group were higher than those in the control group (P<0.05). After treatment, the PCT and hs-CRP levels of the experimental group were lower than those of the control group (P<0.05). Age, hypertension, length of hospital stay, heart failure and hs-CRP were independent risk factors affecting the effective rate of treatment for acute myocardial infarction complicated by infection. In conclusion, cefoperazone-sulbactam has good therapeutic effect on acute myocardial infarction complicated with infection. It can reduce the level of PCT and serum inflammatory indicator hs-CRP; PCT and hs-CRP have certain predictive value on the therapeutic effect, which is worthy of promotion.

Keywords: cefoperazone-sulbactam, acute myocardial infarction, infection, serum procalcitonin, serum inflammatory indicators Tob Regul Sci.™ 2021;7(4-1): 730-740 DOI: doi.org/10.18001/TRS.7.4.1.27

Shan Wang#, Department of Neurology, Shouguang People's Hospital, Shouguang, Weifang 262700, Shandong, China, Xiaohua Zhao#, Department of Neurology, Shouguang People's Hospital, Shouguang, Weifang 262700, Shandong, China, Wenbao Sun*, Department of General Surgery, Shouguang Hospital of Traditional Chinese Medicine, No. 3353 Shengcheng Street, Shouguang, Weifang 262700, Shandong, China(E-mail: s3k2rs@163.com-, #Contributed equally to this study)

Clinical efficacy of cefoperazone-sulbactam in patients with acute myocardial infarction complicated with infection and effects on serum procalcitonin and serum inflammatory indicators

INTRODUCTION

myocardial infarction refers to myocardial necrosis caused by acute and **L**continuous coronary artery hypoxia-ischemia. It is characterized by acute attack, rapid progression, multi complications and high mortality (1). Although the treatment of acute myocardial infarction has been improved greatly in the past decade, myocardial infarction is often accompanied by pulmonary infection clinically, which brings a higher risk of death and is more difficult to treat. Therefore, when acute myocardial infarction complicated by infection occurs, infection should actively controlled to prevent further deterioration of the condition (2-4).

According to relevant studies, acinetobacter baumannii complex and pseudomonas aeruginosa are non-fermentive gram-negative bacteria, which are common causes of clinical infection (5). β -Lactam is one of the most commonly used antibiotics in clinical practice. As an example, cefoperazone is a β-Lactam antibiotic that is used to treat various gram-positive and gram-negative infections. Sudhakar et al (6) reported in a study that for patients with acute infective endocarditis caused by P. aeruginosa, the use of β-lactam or carbapenem and aminoglycosides would be better. However, the increase in β -lactam antibiotics has led to the development of various antibiotic resistance (7,8). It has been proved that sulbactam could enhance the spectra of cefoperazone in vitro, while cefoperazone-sulbactam is a third-generation combination of cephalosporin and β-lactamase inhibitors, which is mainly used to treat severe bacterial infections (9,10). According to the study of Lai et al., sulbactam combined with cefoperazone could improve the antibacterial activity against caba-resistant enterobacteriaceae or baumannii. Moreover, their results demonstrated that the sensitivity of cefoperazone alone in treating all different drug-resistant organisms was significantly lower than that of cefoperazone combined with sulbactam, and additional sulbactam could increase the activity of cefoperazone on most different resistant organisms (11). However, there are still few clinical reports on cefoperazone-sulbactam in acute myocardial infarction complicated by infection. Therefore, this study was conducted.

This study investigated the clinical efficacy of cefoperazone-sulbactam in patients with acute myocardial infarction complicated by infection and the influence of serum procalcitonin and serum inflammatory indicators in patients, so as to provide certain clinical reference for clinical treatment of this disease.

DATA AND METHODS

General Data

A total of 109 cases of patients with acute myocardial infarction complicated by infection were collected as research subjects. They were admitted to our hospital from August 2018 to September 2019, with an age of 45-78 years old and an average age of (62.13±16.31). They were divided into a control group and an experimental group according to different treatment methods. Patients (53 cases) in the control group received cefoperazone, while patients (56 cases) in the experimental group received cefoperazone-sulbactam. This study has been approved by the ethics committee of the hospital. All patients and their families have been informed and signed informed consent.

Inclusion and exclusion criteria

Inclusion criteria were as follows: 1. Patients diagnosed with acute myocardial infarction in our hospital. 2. Patients developed signs of infection and fever 48 hours after admission. 3. Patients whose blood specimen was positive after bacterial culture. 4. Patients whose blood routine examination results showed elevation of white blood cells. Exclusion criteria were as follows: 1. Patients with malignant tumor or severe liver and kidney dysfunction. 2. Patients with previous mental illness. 3. Patients with drug allergy. 4. Patients with long-term use of antibiotics. 5. Patients with other systemic inflammatory diseases.

Methods

Patients in the control group received intravenous injection of 2.0g cefoperazone (Qilu pharmaceutical Co., Ltd., SFDA approval number: H37020569) combined with 100ml 0.9% sodium chloride, vt, q12h, for 1 week. Patients in the experimental group received intravenous injection of 2.0g cefoperazone-sulbactam (Pfizer, SFDA approval number: H10960113) combined with 100ml 0.9% sodium chloride injection, vt, q12h, for 1 week.

Observational Indexes

Therapeutic effect, bacterial clearance rate and adverse reaction of the two groups were compared. Serum procalcitonin (PCT) and serum hypersensitive C-reactive protein (hs-CRP) levels were observed and compared. ROC curve was used for analysis of PCT, hs-CRP on predictive value for the treatment of acute myocardial infarction complicated by infection, and Logistic regression analysis was used to analyze the risk factors for the effect of acute myocardial infarction complicated

Clinical efficacy of cefoperazone-sulbactam in patients with acute myocardial infarction complicated with infection and effects on serum procalcitonin and serum inflammatory indicators

by infection.

Test methods

Clinical efficacy evaluation criteria

Cure: the infection-related symptoms and signs completely disappeared, with normal white blood cell level. Significant effect: the infection-related symptoms and signs of the patients basically disappeared, with significantly decreased white blood cell level. Effective: the infection-related symptoms and signs were reduced, and the white blood cell level was lower than that of admission. Invalid: patient's clinical symptoms did not improve or even aggravate after treatment. Total effective rate = (cure + significant effect + effective) / total number *100%

Bacteriological assessment

BioMerieux VITEK 2 Compact automatic bacterial identification and drug sensitivity analysis system was used for strain identification of patients on fasting blood in both groups 1 day after infection and 1 week after treatment. Specific operations were conducted by relevant professionals.

Detection of serum PCT and hs-CRP levels

Fasting blood of patients was collected 1 day after infection and 1 week after treatment, and were

tested by electrochemilu minescene immunoassay. PCT and hs-CRP levels in serum were detected by ADVIA2400 automatic biochemical analyzer and supporting kit. Specific operations were conducted by relevant professionals.

Statistical Method

SPSS19.0 (Asia Analytics Formerly SPSS China) was used in this study. The enumeration data were expressed by rate, and the rate was compared by $\chi 2$. The measurement data were expressed as mean±standard deviation (mean±sd). The t test was used for comparison between the two groups. ROC curve was used for analysis of PCT, hs-CRP on predictive value for the treatment of acute myocardial infarction complicated by infection, and logistic regression analysis was used to analyze the risk factors for the effect of acute myocardial infarction complicated by infection.

RESULTS Clinical Data

There were no differences between the two groups in age, gender, BMI, smoking and drinking history, length in bed, infection type and place of residence (P>0.05). More details were shown in Table I.

Table I General data

Table 1 General data					
	Control group	Experimental	χ^2/t	P	
	(n=53)	group (n=56)			
Gender (n(%))			0.010	0.922	
Male	27 (50.94)	28 (50.00)			
Female	26 (49.06)	28 (50.00)			
Age (years old)	61.86±15.97	62.12±16.08	0.085	0.933	
BMI(kg/m2)	25.21±1.41	25.31±1.29	0.387	0.700	
Smoking (n(%))			0.314	0.576	
Yes	34 (64.15)	33 (58.93)			
No	19 (35.85)	23 (41.07)			
Drinking (n(%))			0.012	0.913	
Yes	25 (47.17)	27 (48.21)			
No	28 (52.83)	29 (51.79)			
Length in bed	8.78±1.43	9.01 ± 1.27	0.889	0.376	
(day)					
Hypertesion			< 0.001	0.985	
[n(%)]					
Yes	37 (69.81)	39 (69.64)			
No	16 (30.19)	17 (30.36)			
Diabetes [n(%)]			< 0.001	0.980	
-					

Shan Wang et al.

Clinical efficacy of cefoperazone-sulbactam in patients with acute myocardial infarction complicated with infection and effects on serum procalcitonin and serum inflammatory indicators

Yes	33 (62.26)	35 (62.50)		
No	20 (37.74)	21 (37.50)		
Cardiac failure			0.190	0.663
[n(%)]				
Yes	30 (56.60)	34 (60.71)		
No	23 (43.40)	22 (39.29)		
Residence			0.222	0.637
(n(%))				
Cities	26 (49.06)	30 (53.57)		
	27 (50.94)	26 (46.43)		
Countrysides				
Infection type			0.494	0.974
[n(%)]				
Upper	21 (39.62)	19 (33.93)		
respiratory				
infection				
Lower	10 (18.87)	11 (19.64)		
respiratory				
infection				
Gastrointestinal	13 (24.53)	15 (26.79)		
infection				
Urinary system	6 (11.32)	8 (14.29)		
infection				
Others	3 (5.66)	3 (5.35)		

Evaluation of Clinical Curative Effect

The total effective rate of the control group was 71.70%, and that of the experimental group

was 91.70%. It was higher in the experimental group than that in the control group (P<0.05). More details were shown in Table II.

Table II Evaluation of clinical curative effect [n(%)]

			L \ /	-
	Control group	Experimental	χ^2	P
	(n=53)	group (n=56)		
Cure	17 (32.08)	25 (44.64)	1.816	0.178
Significant effect	15 (28.30)	19 (33.93)	0.402	0.526
Effective	6 (11.32)	7 (12.50)	0.036	0.849
Invalid	15 (28.30)	5 (8.93)	6.821	0.009
Total effective	38 (71.70)	51 (91.70)	6.821	0.009

Bacterial Clearance Rate

In the two groups, 109 strains of pathogens were identified by bacterial identification before treatment, of which 53 strains were in the control group, 32 strains were cleared after treatment, with the bacterial clearance rate of 60.38%. And another

56 strains were in the experimental group, 50 strains were cleared after treatment, with the bacterial clearance rate of 89.29%. The bacterial clearance rate of the experimental group was higher than that of the control group (P<0.05). As shown in Table III.

Table III Bacterial clearance rate [n(%)]

Shan Wang et al.

Clinical efficacy of cefoperazone-sulbactam in patients with acute myocardial infarction complicated with infection and effects on serum procalcitonin and serum inflammatory indicators

		Control group	Experimental	χ^2	P
			group		
Pseudomonas	Strains	17 (32.08)	18 (32.14)	5.672	0.994
aeruginosa	Cleared	9 (52.94)	16 (88.89)	5.536	0.019
	strains				
Klebsiella	Strains	11 (20.75)	13 (23.21)	0.096	0.757
pneumoniae	Cleared	6 (54.55)	12 (92.31)	4.531	0.033
	strains				
Staphylococcus	Strains	10 (18.87)	11 (19.64)	0.011	0.918
aureus	Cleared	8 (80.00)	11 (100.00)	2.432	0.119
	strains				
Acinetobacter	Strains	8 (15.09)	8 (14.29)	0.014	0.905
baumannii	Cleared	5 (62.50)	7 (87.50)	1.333	0.248
	strains				
Streptococcus	Strains	2 (3.77)	2 (3.57)	0.003	0.955
pneumoniae	Cleared	1 (50.00)	1 (50.00)	0.000	>0.999
	strains				
Others	Strains	5 (9.43)	4 (7.14)	0.189	0.664
	Cleared	3 (60.00)	3 (75.00)	0.225	0.635
	strains				
Total	Strains	53 (100.00)	56 (100.00)		
	Cleared	32 (60.38)	50 (89.29)	12.210	< 0.001
	strains				

Incidence of Adverse Reactions

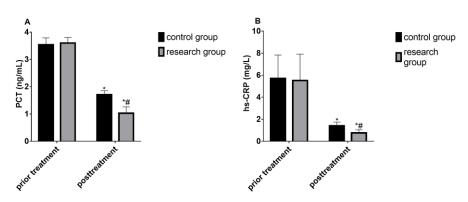
There were 11 cases of adverse reactions in the control group, with an incidence rate of 20.75%, and 4 cases of adverse reactions in the experimental group, with an incidence rate of 7.14%. The

incidence rate of adverse reactions in the experimental group was lower than that in the control group (P<0.05). More details were shown in Table IV.

Table IV Incidence rate of adverse reactions [n(%)]

	Control group	Experimental	χ^2	P
	(n=53)	group (n=56)		
Gastrointestinal	5 (7.55)	2 (3.57)	1.557	0.212
reaction				
Headache	3 (5.66)	1 (1.79)	1.156	0.282
Rash	3 (5.66)	1 (1.79)	1.156	0.282
Total	11 (20.75)	4 (7.14)	4.251	0.039

Detection of Serum PCT and hs-CRP Levels


The PCT levels of the control group before and after treatment were (3.54 ± 0.25) and (1.71 ± 0.14) ng/mL, respectively. The PCT levels of the experimental group before and after treatment were (3.60 ± 0.20) and (1.03 ± 0.23) ng/mL, respectively. After treatment, the PCT level of the experimental group was lower than that of the control group (P<0.05). Hs-CRP levels in the control

group before and after treatment were (5.70±2.13) and (1.41±0.34) mg/L, respectively. The hs-CRP levels of the experimental group before and after treatment were (5.52±2.39), (0.76±0.27) mg/L, respectively. There were no differences in the hs-CRP level between the two groups before and after treatment (P 0.05). After treatment, the hs-CRP level of the experimental group was lower

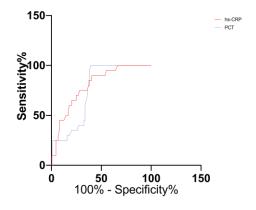
Clinical efficacy of cefoperazone-sulbactam in patients with acute myocardial infarction complicated with infection and effects on serum procalcitonin and serum inflammatory indicators

than that of the control group (P<0.05), as shown in Figure 1.

Figure 1 Detection of serum PCT and hs-CRP levels

A: After treatment, the PCT level of the experimental group was lower than that of the control group. B: After treatment, the PCT level of the experimental group was lower than that of the control group. * means compared with that before treatment, P<0.05. # means compared with the control group after treatment, P<0.05.

The Predictive Value of PCT and hs-CRP in Patients with Acute Myocardial Infarction Complicated by Infection


The AUC, critical level, sensitivity and specificity of PCT in predicting the efficacy of acute myocardial infarction complicated by infection were 0.753, 60.67, 100.00 and 59.55,

respectively. The AUC, critical level, sensitivity and specificity of hs-CRP in predicting the efficacy of acute myocardial infarction complicated by infection were 0.801, 49.55, 90.00 and 57.30, respectively. More details were shown in Table V and Figure 2.

Table V The predictive value of PCT and hs-CRP in patients with acute myocardial infarction complicated by infection

	AUC	Critical level	95%Cl	Sensitivity%	Specificity%
PCT	0.753	60.67 ng/mL	0.6575to0.8475	100.00	59.55
hs-CRP	0.801	49.55 mg/L	0.7054to0.8962	90.00	57.30

Figure 2 The predictive value of PCT and hs-CRP in patients with acute myocardial infarction complicated by infection

Clinical efficacy of cefoperazone-sulbactam in patients with acute myocardial infarction complicated with infection and effects on serum procalcitonin and serum inflammatory indicators

The AUC of PCT and hs-CRP in predicting the efficacy of acute myocardial infarction complicated by infection was 0.753 and 0.801, respectively

Univariate Analysis of Treatment Effect of Patients

All patients were divided into effective group (n=89) and ineffective group (n=20) in accordance with effective rate of treatment. Clinical data of patients in the two groups were collected for

univariate analysis, and it was found that there were no differences in gender, BMI, drinking, diabetes, place of residence and infection type (P>0.05), while there were differences in age, smoking, hypertension, length of bed rest, heart failure, PCT and hs-CRP (P<0.05), as shown in Table VI.

Table VI Univariate analysis

	Effective (n = 89)	Invalid (n = 20)	χ^2/t	P
Gender (n(%))	· · · · · · · · · · · · · · · · · · ·		0.202	0.653
Male	44 (49.44)	11 (55.00)		
Female	45 (50.56)	9 (45.00)		
Age (years old)			20.670	< 0.001
≥60	20 (22.47)	15 (75.00)		
<60	69 (77.53)	5 (25.00)		
BMI(kg/m2)			0.029	0.864
≥25	25 (28.09)	6 (30.00)		
<25	64 (71.91)	14 (70.00)		
Smoking (n(%))			2.435	0.119
Yes	60 (67.42)	17 (85.00)		
No	29 (32.58)	3 (15.00)		
Drinking (n(%))			0.522	0.470
Yes	41 (46.07)	11 (55.00)		
No	48 (53.93)	9 (45.00)		
Length in bed rest			25.200	< 0.001
(day)				
≥10	14 (15.73)	14 (70.00)		
<10	75 (84.27)	6 (30.00)		
Hypertension [n(%)]			4.770	0.029
Yes	58 (65.17)	18 (90.00)		
No	31 (34.83)	2 (10.00)		
Diabetes [n(%)]			0.059	0.808
Yes	56 (62.92)	12 (60.00)		
No	33 (37.08)	8 (40.00)		
Cardiac failure			4.578	0.032
[n(%)]				
Yes	48 (53.93)	16 (80.00)		
No	41 (46.07)	4 (20.00)		
Residence (n(%))			0.399	0.528
Cities	47 (52.81)	9 (45.00)		
Countrysides	42 (47.19)	11 (55.00)		
Infection type [n(%)]			0.353	0.552

Respiratory tra	ct 51 (57.30)	10 (50.00)			
infection					
Others	38 (42.70)	10 (50.00)			
PCT(ng/Ml)	0.98±0.21	1.84 ± 0.43	13.220	< 0.001	
hs-CRP (mg/L)	0.53 ± 0.18	1.58±0.22	22.600	< 0.001	

Multivariate Analysis of the Effective Rate of Treatment in Patients

The indicators with differences in univariate analysis were included in assessment (the assessment table was shown in Table VII). Logistic

regression analysis showed that age, hypertension, length of hospital stay, heart failure and hs-CRP were independent risk factors affecting the effective rate of treatment for acute myocardial infarction complicated by infection, as shown in Table VIII

Table VII Assignment table

Tubic 1111bogiment tubic			
Factors	Assignment		
Age	≥60=0, <60=1		
Smoking	Yes=0, No=1		
Hypertension	Yes=0, No=1		
Length of stay	≥10=0.<10=1		
Cardiac failure	Yes=0, No=1		
PCT	Continuous variables date are analyzed by original		
	data		
hs-CRP	Continuous variables data are analyzed by original		
	data		

Table VIII Logistic multivariate analysis of treatment effect

	В	S.E,	Wals	df	Sig.	Exp (B)	95% C.I. Of	Exp (B)
							Lower limit	Upper limit
Age	-0.243	0.533	0.208	1	0.049	0.984	0.276	2.229
Smoking	0.648	0.529	1.502	1	0.22	2.912	0.678	5.389
Hypertensio	-0.605	0.54	1.253	1	0.026	0.646	0.189	1.575
n								
Length of	-0.403	0.577	0.489	1	0.044	1.068	0.216	2.069
stay								
Cardiac	0.046	0.519	0.008	1	0.033	1.047	0.379	2.892
failure								
PCT	-0.064	0.424	0.019	1	0.127	0.943	0.471	1.942
hs-CRP	-0.015	0.316	0.542	1	0.018	0.742	0.463	1.834

DISCUSSION

In the context of chronic atherosclerotic vascular disease, infectious diseases may cause acute coronary syndrome through acute inflammation, biomechanical stress and vasoconstriction. Various acute respiratory tract infections may be associated with increased risk of acute myocardial infarction, so the infection control would be particularly important (12,13).

In this study, the effective rate of cefoperazone-sulbactam was significantly higher in the experimental group than that in the control group, suggesting that cefoperazone-sulbactam had a better therapeutic effect. We compared the safety of the two treatments and found that the rate of adverse reactions was lower in the experimental group, indicating that cefoperazone-sulbactam was safer than cefoperazone alone. According to report of Peng et al. (14) on the treatment of sepsis with

cefoperazone-sulbactam, cefoperazone-sulbactam has a significant therapeutic effect on sepsis and can improve the therapeutic effect, which is safe and effective. Moreover, Song, Sun et al. (15,16) also showed in their study that cefoperazone-sulbactam was more effective in treating stroke comorbid with infection and nosocomial infection, which was consistent with our results, indicating that cefoperazone-sulbactam had a better effect on post-infection treatment. Subsequently, investigated the bacterial clearance rate cefoperazone-sulbactam after acute myocardial infarction complicated by infection, and found that the bacterial clearance rate of the experimental group was higher than that of the control group, indicating that cefoperazone-sulbactam was more sensitive to bacteria than cefoperazone alone. Ali et al. (17) studied the present situation of bacterial susceptibility to respiratory tract infection in people of all ages in Punjab, Pakistan, and explored the sensitivity of various antibiotics to bacteria. It was that the highest sensitivity cefoperazone-sulbactam to gram-negative bacteria was 91.39%, which confirmed the feasibility of the results of this study. However, our results show that the streptococcus clearance rate of patients treated with cefoperazone-sulbactam did not exceed 50%, but the combination of β -lactam antibiotics and aminoglycosides has a synergistic antibacterial effect (18), which means that the treatment plan for patients with acute myocardial infarction complicated with infection needs to be improved.

PCT is widely originated from endotoxin or mediator released by bacterial infection, and CRP is an inflammatory marker that predicts the risk of various cardiovascular outcomes, including acute myocardial infarction (19,20). In this study, the levels of these two biomarkers were detected before and after cefoperazone-sulbactam treatment for acute myocardial infarction complicated infection. It was found that the two biomarkers in the experimental group were lower than those in the control group, which is consistent with the results of Chen et al. (21) on the changes of two biomarkers in the treatment of acinetobacter baumannii severe pneumonia. We could conclude that cefoperazone-sulbactam in treatment of acute myocardial infarction complicated by infection could reduce the levels of PCT and and other inflammatory markers. According to recent studies, inflammation after acute myocardial infarction could clear wounds, promote wound healing and scar formation, however, excessive inflammation can lead to left ventricular remodeling and heart failure. Markers of systemic inflammatory response are predictors of adverse clinical outcomes such as death in patients with acute myocardial infarction, recurrent myocardial infarction and heart failure (22). Therefore, we

investigated the predictive value of PCT and hs-CRP for cefoperazone-sulbactam in treatment of acute myocardial infarction complicated by infection, and found that the sensitivity of PCT in predicting the efficacy of acute myocardial infarction complicated by infection was 100.00%. According to the study of Vitkon-Barkay et al. (23), the best criterion for the identification of PCT as a differential diagnostic indicator is 0.09 ng/dl (with sensitivity of 94.4%). Serum PCT and CRP had a good ability to infected AMI patients non-infected AMI patients, and it should be used as an auxiliary test when inflammation signs appeared in AMI patients. Moreover, Sun et al. (24) also reported in the study that serum PCT level of patients was correlated with myocardial infarction complicated by pulmonary infection, suggesting that PCT level could be used as an important diagnostic indicator of this complication, which was consistent with our results. Therefore, we speculated that PCT could be used as an easily detectable biological indicator to assess the of acute myocardial prognosis infarction complicated by infection.

Finally, logistic regression was used to analyze the risk factors affecting the therapeutic effect of acute myocardial infarction, and it was found that age, hypertension, length of stay, heart failure and hs-CRP were independent risk factors affecting the therapeutic effect of acute myocardial infarction. According to the study of Jie-yu et al. (25), age, length of stay, hypertension and heart failure were all risk factors for acute myocardial infarction complicated by infection. There were also some relevant reports supporting that elevation of hs-CRP was an important risk factor for cardiovascular diseases (26). Pokharel et al. (27) pointed out that elevation of hs-CRP at 30 days after acute myocardial infarction was associated with deterioration of health status. These results suggested that we should pay special attention to these aspects in the treatment of acute myocardial infarction complicated by infection to improve the therapeutic effect(28).

In conclusion, cefoperazone-sulbactam has a good therapeutic effect on acute myocardial infarction complicated by infection. It can reduce the level of PCT and serum inflammatory indicator hs-CRP; PCT and hs-CRP have certain predictive value for their therapeutic effect, which is worthy of promotion.

REFERENCES

 Fang YZ, Wang QQ, Dai SH, et al: Clinical analysis for the death of 127 patients with acute myocardial infarction and nursing strategies.

- Biomed Res 29: 2697-2702, 2018.
- 2. Anderson JL and Morrow DA: Acute myocardial infarction. N Engl J Med 376: 2053-2064, 2017.
- 3. Reed GW, Rossi JE and Cannon CP: Acute myocardial infarction. Lancet 389: 197-210, 2017.
- 4. Sun S, Wang F, Yu M and Kang J: Clinical study of serum procalcitonin level in patients with myocardial infarction complicated by pulmonary infection. Exp Ther Med 16: 5210-5214, 2018.
- 5. Li T, Sheng M, Gu T, Zhang Y, Yirepanjiang A and Li Y: In vitro assessment of cefoperazone-sulbactam based combination therapy for multidrug-resistant Acinetobacter baumannii isolates in China. J Thorac Dis 10: 1370, 2018.
- 6. Sudhakar BGK: Pseudomonas aeruginosa septicemia resulting in coronary stent infection and coronary artery aneurysm and acute infective endocarditis of mitral valve causing severe mitral regurgitation-A case report. IHJ Cardiovascular Case Reports (CVCR) 2: 191-195, 2018
- 7. Lai CC, Chen CC, Lu YC, Lin TP, Chuang YC and Tang HJ: Appropriate composites of cefoperazone–sulbactam against multidrug-resistant organisms. Infect Drug Resist 11: 1441, 2018.
- 8. Katukuri GR, Maddala RN, Ramamoorthi K and Hande M: Cefoperazone induced gastrointestinal bleeding. J Clin Diagn Res 10: OD10, 2016.
- 9. Hu H: Fatal Vitamin K-Dependent Coagulopathy Associated with Cefoperazone/Sulbactam: A Case Report. Drug Saf Case Rep 6: 6, 2019.
- Chiang TT, Tang HJ, Chiu CH, et al: Antimicrobial activities of cefoperazone-sulbactam in comparison to cefoperazone against clinical organisms from medical centers in Taiwan. J Med Sci 36: 229, 2016.
- 11. Lai CC, Chen CC, Lu YC, Chuang YC and Tang HJ: In vitro activity of cefoperazone and cefoperazone-sulbactam against carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Infect Drug Resist 12: 25, 2019.
- 12. Kwong JC, Schwartz KL and Campitelli MA: Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 378: 345-353, 2018.
- 13. Rae N, Finch S and Chalmers JD: Cardiovascular disease as a complication of community-acquired pneumonia. Curr Opin Pulm Med 22: 212-218, 2016.
- 14. Peng X and Luo M: Effect of cefoperazone sulbactam on the efficacy of sepsis and the inflammatory factors of IL-6, IL-10, IL-1 and CRP. Chinese Journal of Biochemical Pharmaceutics 37: 257-258, 261, 2017.

- 15. Song Y, Wang J and Liu L: Cost-effectiveness analysis of cefoperazone sulbactam sodium in nosocomial infection. Chinese Journal of Biochemical Pharmaceutics: 342-343, 2017.
 - 16. Sun Y, Li P and Chen C: Clinical analysis of cefoperazone-sulbactam in treatment of pulmonary infections in patients with cerebral stroke. Chinese Journal of Nosocomiology: 4, 2013.
 - 17. Ali I and Butt MA: Antibiotic susceptibility pattern of bacterial isolates from patients of respiratory tract infection at 43 centers in Punjab, Pakistan. Clin Exp Pharmacol 7: 2161-1459, 2017.
 - 18. Jiao Y, Moya B, Chen MJ, Zavascki AP, Tsai H, Tao X, Sutaria DS, Louie A, Boyce JD, Deveson Lucas D, et al: Comparable Efficacy and Better Safety of Double β-Lactam Combination Therapy versus β-Lactam plus Aminoglycoside in Gram-Negative Bacteria in Randomized, Controlled Trials. Antimicrob Agents Chemother 63: e00425-19, 2019.
 - 19. Shrivastava AK, Singh HV, Raizada A, et al: C-reactive protein, inflammation and coronary heart disease. Egypt Heart J, 67: 89-97, 2015.
 - 20. Shah TA, Pai V and Devrari JC: Efficacy of Procalcitonin as a Marker of Acute Inflammation in Patients of Suspected Bacterial Sepsis. International Journal of Current Microbiology and Applied Sciences 5: 533-536, 2016.
 - 21. Chen Z, Huang S and Liu Z: Clinical application of cefoperazone/sulbactam combined with thymosin α1 for the treatment of severe pneumonia caused by Acinetobacter baumannii. Chinese Journal of Infection Control 16: 1048-1052, 2017.
 - 22. Fang L, Moore XL, Dart AM and Wang LM: Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol 12: 305, 2015.
 - 23. Vitkon-Barkay I, Lazarovitch T, Marchaim D, Zaidenstein R, Temkin E, Martin ET, Segaloff HE, Litovchik I, Rum V, Richter C, et al: Usefulness of Serum Procalcitonin as a Markerfor Coexisting Infection in Patients With Acute Myocardial Infarction. Am J Cardiol 122: 729-734, 2018.
 - 24. Sun S, Wang F, Yu M and Kang J: Clinical study of serum procalcitonin level in patients with myocardial infarction complicated by pulmonary infection. Exp Ther Med 16: 5210-5214, 2018.
 - 25. Jie-yu C: Logistic-regression Analysis of Nosocomial Infection Risk Factors in Acute Myocardial Infarction. Chinese Journal of Nosocomiology: 1, 2009.
 - 26. Yoshinaga R, Doi Y, Ayukawa K and Ishikawa S: High-sensitivity C reactive protein as a predictor of inhospital mortality in patients with cardiovascular disease at an emergency department: a retrospective cohort study. BMJ

Clinical efficacy of cefoperazone-sulbactam in patients with acute myocardial infarction complicated with infection and effects on serum procalcitonin and serum inflammatory indicators

- Open 7: e015112, 2017.
- 27. Pokharel Y, Sharma PP, Qintar M, Lu Y, Tang Y, Jones P, Dreyer RP and Spertus JA: High-sensitivity C-reactive protein levels and health status outcomes after myocardial infarction. Atherosclerosis 266: 16-23, 2017.
- 28. Wang Gaihua, Zhang Tianlun, Dai Yingying, Lin

Jinheng and Chen Lei. A Serial-Parallel Self-Att ention Network Joint With Multi-Scale Dilated C onvolution, IEEE Access, 9(5), 2021: 71909-719 1. DOI: 10.1109/ACCESS.2021.3079243