Heng Yin Cui Xia Pengfei Xiao Huili Ni

> Objective: The aim of this study is to explore the role of nutritional nursing in the quality of life, nutritional status, and complications in elderly uremic patients receiving peritoneal dialysis (PD). Methods: We enrolled 205 uremic patients who were treated with PD in our hospital from March 2018 to April 2019 as the research subjects. Then we grouped them according to different nursing methods: 116 cases receiving nutritional nursing were assigned to the research group (RG) while the other 89 cases receiving routine nursing to the control group (CG). Clinical biochemical markers were detected by the biochemistry analyzer, the nutritional status determined by the Modified Quantitative Subjective Global Assessment (MQSGA), the anxiety and depression intensity assessed by Self-rating Anxiety Scale (SAS) and Self-rating Depression Scale (SDS), the sleep quality assessed by the Pittsburgh Sleep Quality Index(PSQI), the nursing satisfaction level assessed by the hospital's self-made nursing satisfaction questionnaire, and the quality of life evaluated by the Quality of Life Questionnaire (QLQ-C30). The complication rate in patients was monitored. Results: The improvement of clinical biochemical markers after nursing was better in RG than in CG. The decrease in the MQSGA score, SAS score, SDS score, and PSQI score after nursing was sharper in RG than in CG. Compared with CG, RG had a remarkably lower complication rate, a notably higher nursing satisfaction level, and a remarkably better quality of life. Conclusion: Nursing intervention for elderly uremic patients receiving PD can enhance the quality of life of patients, improve the nutritional status, promote the recovery from the disease, and reduce the complication rate.

> Keywords: nutritional nursing, uremia in elderly patients, peritoneal dialysis, quality of life, nutritional status, complications

Tob Regul Sci.™ 2021;7(4-1): 546-556 DOI: doi.org/10.18001/TRS.7.4.1.7

#### INTRODUCTION

Chronic kidney disease, a public health concern with an increasingly higher incidence around the world that can easily trigger cardiovascular and all-cause deaths [1], can finally progress into uremia [2]. Uremia affects almost all body systems, leading to

decreased renal function, neuromuscular dysfunction, and cognitive impairments in patients [3], as well as severe diseases such as psychiatric illness, heart failure, or other life-threatening complications [4]. Due to the clinical insufficiency in kidneys for transplantation,

dialysis is employed to stimulate renal function to treat uremia [5, 6]. Clinical

Heng Yin\* Department of Cardiology, Brain Hospital of Hunan Province, Changsha 410017, Hunan Province, China, Cui Xia\* Department of Endocrinology, Brain Hospital of Hunan Province, Changsha 410017, Hunan Province, China, Pengfei Xiao Department of scientific research, Brain Hospital of Hunan Province, Changsha 410017, Hunan Province, China, Huili Ni Department of Spinal surgery, Brain Hospital of Hunan Province, Changsha 410017, Hunan Province, China, Heng Yin\* and Cui Xia\* contributed equally to this work as co-first author, "Corresponding author:Huili Ni, Department of Spinal surgery, Brain Hospital of Hunan Province, 427th Section 3, Furong Middle Road, Yuhua District, Changsha 410017, Hunan Province, China(E-mail: 584276810qq.com)

546

studies revealed that the severity of depression in patients after dialysis can predict patient survival independently, and that depression can worsen the illness of patients with chronic kidney disease, leading to an increase in patient mortality and hospitalization rates and a decrease in the patient's treatment compliance and quality of life [7]. One former study suggested that nursing interventions during the dialysis can improve treatment

compliance [8].

Malnutrition is very common in patients on dialysis, responsible for the poor prognosis [9]. The diet designed for patients on dialysis is of high calorie and high fat, which leads to insufficient dietary intake and malnutrition in elderly patients, but the nutritional status can be enhanced by a modified diet [10]. Patients requiring dialysis are generally with serious physical health problems, in need of nursing interventions [11]. By performing nutritional nursing, the staff will analyze risk factors of malnutrition the treatment, establish communication platform between nurses and patients, and teach patients health education, disease knowledge, and advantages of the treatment method to strengthen patients' confidence in medical staff, help patients foster a correct understanding of nutritional nursing, and motivate patients to actively cooperate with the nursing staff [12, 13]. In a previous study, the nutritional nursing intervention improved the nutritional status of elderly hip fracture patients and was superior to routine nursing in enhancing the independence and cognitive function of patients [14]. The study by Ebrahimi H et al. [15] revealed that nutritional nursing can greatly enhance the nutrition and quality of life of patients receiving dialysis.

Here we performed the nutritional nursing intervention on elderly uremic patients receiving peritoneal dialysis (PD) to discuss the role of nutritional nursing in elderly uremic patients, hoping to provide a feasible nursing intervention for elderly uremic

patients on PD.

#### MATERIALS AND METHODS

#### **Basic Information**

We enrolled 205 uremic patients who were treated with PD in our hospital from March 2018 to April 2019 as the research subjects. Then we grouped them according to different

nursing methods: 116 patients receiving nutritional nursing were assigned to the research group (RG) while 89 patients receiving routine nursing to the control group (CG). Inclusion criteria: Patients diagnosed with uremia [16]; patients with stable vital signs, independent thinking ability, and complete clinical data; patients capable of understanding the relevant content of the scales and giving responses. This study has got ethical approval from the ethics committee of our hospital and obtained informed consent from all research participants and their families. Exclusion criteria: Patients who did not actively cooperate with this study or withdrew from the study midway; patients with mental illness or family history of mental illness; patients with a comorbid malignant tumor, severe organ dysfunction, or infectious diseases; patients lost to the follow-up.

#### Nursing Interventions

Patients in CG were given routine nursing. First, the nursing staff made routine nursing preparation for PD. Next, they taught patients uremia-related knowledge, health education, the principle and efficacy of PD treatment, and matters needing attention during and after the dialysis. Finally, they regularly checked the vital signs of patients, took measures to prevent complications, and

arranged a good ward environment.

Patients in RG were given are given nutritional nursing. We assigned a nursing team with members from multiple disciplines to provide a nutritional nursing intervention and targeted services from the hospital admission to the discharge. (1) Psychological intervention: First, nursing staff assessed the condition of each patient and recorded the doubts and negative psychological status of patients facing economic pressure. Then, they communicated with patients in a targeted way explained in detail the necessity, advantages, and safety of PD to enhance patients' confidence in the treatment, eliminate patients' anxiety and fear of disease, and make patients actively cooperate with the treatment in good mental status. (2) PD care: Nursing staff carefully checked concentration, color, turbidity, and package of the dialysate regularly. In the case of a large amount of fluid replacement or rescue, the nursing staff should block the dialysis tube to avoid clogging of the catheter. (3) Nutritional care: Nursing staff calculated the required volume of various nutrients and water

according to the actual condition of each patient and designed a targeted diet for each patient to ensure scientific food intake (foods containing sodium or potassium needed additional attention). The dietary intake of patients was mainly high-quality protein, requiring lean meat, low protein, high vitamins, low fat, and sufficient water to facilitate smooth defecation and prevent anemia or disorders of calcium phosphorus metabolism. (4)Care complications: Nursing staff monitored the patient's condition just in case of colds and diarrhea. If colds and diarrhea occur, staff should inform the doctor to take active and effective measures to prevent the occurrence of peritonitis caused by gastrointestinal infection. Besides, the nursing staff kept the patient's wounds dry, guided the body cleaning, and regularly helped patients change their body positions to prevent pressure ulcers or deep vein thrombosis.

#### Outcome Measures

(1): We collected 5mL of venous blood from the elbow of patients before and after the nursing and centrifuged the blood sample at 1500Xg, 4°C, for 10min. Then the sample was stored in a -70°C refrigerator. An automatic biochemistry analyzer was used to detect urea nitrogen, serum creatinine, serum albumin, and prealbumin according to kit instructions. Human urea nitrogen was from Shanghai Yiji Industries Co., Ltd. (Shanghai, China, DA6474113), serum creatinine from Shanghai Xiyuan Biotechnology Co., Ltd. (Shanghai, China, XY-033-04591), serum Shanghai albumin from Hengdu Biotechnology Co., Ltd. (Shanghai, China, and prealbumin from Wuhan A9511), Chundu Biotechnology Co., Ltd. (Wuhan, CD-1155-LIN). Enzyme-linked immunosorbent assay (ELISA) [17] was carried out to measure the concentrations of interleukin-6 (IL-6), tumor necrosis factor-α (TNF- $\alpha$ ), and high-sensitivity C-reactive protein (hs-CRP) according to kit instructions. Human hs-CRP was from Wuhan Weike Saisi Technology Co., Ltd. (Wuhan, China, ELA-E0821r), TNF-α from Shanghai Hengfei Biotechnology Co., Ltd. (Shanghai, China, 130-110-100), and IL-6 from Multisciences (Lianke) Biotech Co., Ltd. (Hangzhou, China, 70-EK106/2).

(2) The modified quantitative subjective

global assessment (MQSGA) scale [18] assess the food worked to intake, gastrointestinal symptoms, and bodyweight of all patients during nursing. The score of this scale lies between 7 to 35 points. A score of ≤ 10 points represents normal nutritional status, a score from 11 to 19 points represents mild malnutrition, and a score of  $\geq 20$  points represents severe malnutrition. A higher score suggests a worse nutritional status.

(3) The 100-point Self-rating Anxiety Scale (SAS) [19] worked to assess the anxiety of patients. A score from 50 to 70 points represents mild anxiety, a score from 71 to 90 points represents modest anxiety, and a score over 90 points represents severe anxiety. A higher score suggests more severe anxiety.

(4) The 100-point Self-rating Depression Scale (SDS) [20] worked to evaluate the depression of patients. A score from 50 to 70 points represents mild depression, a score from 71 to 90 points represents modest depression, and a score over 90 points represents severe depression. A higher score suggests more severe depression.

(5) The 21-point Pittsburgh Sleep Quality Index (PSQI) scale [21] comprised of 7 components worked to evaluate the sleep quality of patients. A higher score suggests a

worse sleep quality.

(6) Complications occurring in patients

during nursing were recorded.

(7) The self-made nursing satisfaction questionnaire by our hospital worked to assess the satisfaction level of patients. It is a 100-point questionnaire with 20 items. A higher score suggests a higher nursing satisfaction level.

(8) The Quality of Life Questionnaire (QLQ-C30) [22] worked to determine the quality of life of patients. It includes 6 items: physiological function, health status, physical function, mental health, social function, and emotional function. Each item was assigned a score from 0 to 100 points. A higher score suggests a higher life quality.

#### Statistical Analysis

Data analysis was carried out on SPSS 25.0 (EASYBIO, Beijing, China) and data visualization was conducted on GraphPad Prism 7. The count data was represented in the form of the cases/percentage [n (%)] and its intergroup comparison was analyzed by the chi-square test. When the theoretical frequency in the chi-square test was below 5,

the continuity correction chi-square test was used. The measurement data was represented in the form of the mean  $\pm$  standard deviation (  $\times$   $\pm$  sd). Its comparison between before and after nursing within the group was analyzed by the paired t-test and its pairwise comparison was analyzed by the LSD-t test. A statistically significant difference was determined at when P < 0.05.

#### RESULTS Basic Data

RG was comprised of 67 males and 49 females, 61 to 75 years of age, averagely aged (69.51  $\pm$  5.15) years. CG was comprised of 43 males and 46 females, 58 to 72 years of age, averagely aged (68.64  $\pm$  5.12) years. As shown in Table 1, the comparison between the two groups revealed no notable difference in age, sex, body mass index (BMI), cause of disease, place of residence, ethnicity, educational background, smoking, drinking, diabetes, and hypertension (P > 0.05).

Table 1 Basic information of patients in the two groups [n (%)] (  $x \pm sd$ )

| Factors                      | RG (n = 116) | CG (n = 89) | $t/\chi^2$ | P     |
|------------------------------|--------------|-------------|------------|-------|
| Sex                          |              |             | 1.806      | 0.178 |
| Male                         | 67(57.76)    | 43 (48.31)  |            |       |
| Female                       | 49 (42.24)   | 46 (51.69)  |            |       |
| Age (year)                   |              |             | 1.202      | 0.231 |
|                              | 69.51±5.15   | 68.64±5.12  |            |       |
| BMI (kg/m²)                  |              |             | 1.550      | 0.123 |
|                              | 24.54±3.45   | 23.78±3.52  |            |       |
| Causes                       |              |             | 0.514      | 0.972 |
| Diabetic nephropathy         | 33 (28.45)   | 25 (28.09)  |            |       |
| Chronic glomerulonephritis   | 23 (19.83)   | 19 (21.35)  |            |       |
| Polycystic kidney            | 14 (12.07)   | 13 (14.61)  |            |       |
| Obstructive nephropathy      | 21 (18.10)   | 14 (15.73)  |            |       |
| Hypertensive nephrosclerosis | 25 (21.55)   | 18 (20.22)  |            |       |
| Place of residence           |              |             | 1.960      | 0.161 |
| Urban area                   | 59 (50.86)   | 54 (60.67)  |            |       |
| Rural area                   | 57 (49.14)   | 35 (39.33)  |            |       |
| Ethnicity                    |              |             | 0.179      | 0.672 |
| Han nationality              | 66 (56.90)   | 48 (53.93)  |            |       |
| Minority nationality         | 50 (43.10)   | 41 (46.07)  |            |       |
|                              |              |             |            |       |

Heng Yin et al. Effect of Nutritional Nursing on the Quality of Life, Nutritional Status, and Complications in Elderly Uremic Patients Receiving Peritoneal Dialysis

| Educational background |            |            | 0.029 | 0.863 |
|------------------------|------------|------------|-------|-------|
| ≥ high school          | 47 (40.52) | 35 (39.33) |       |       |
| < high school          | 69 (59.48) | 54 (60.67) |       |       |
| Smoking                |            |            | 1.868 | 0.172 |
| Yes                    | 62 (53.45) | 39 (43.82) |       |       |
| No                     | 54 (46.55) | 50 (56.18) |       |       |
| Drinking               |            |            | 0.217 | 0.641 |
| Yes                    | 64 (55.17) | 52 (58.43) |       |       |
| No                     | 52 (44.83) | 37 (41.57) |       |       |
| Diabetes               |            |            | 0.019 | 0.889 |
| Yes                    | 65 (56.03) | 49 (55.06) |       |       |
| No                     | 51 (43.97) | 40 (44.94) |       |       |
| Hypertension           |            |            | 0.139 | 0.708 |
| Yes                    | 63 (54.31) | 46 (51.69) |       |       |
| No                     | 53 (45.69) | 43 (48.31) |       |       |

#### Comparison of Biochemical Markers Between the Two Groups before and after Nursing

No marked difference was detected between the two groups before nursing in the expression of urea nitrogen, serum creatinine, serum albumin, and prealbumin before nursing (P > 0.05). As shown in Table 2, after

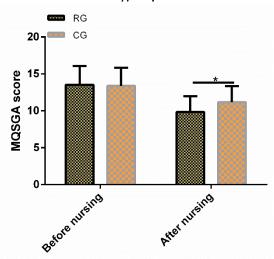
nursing, the expression of all biochemical markers was in a markedly better situation than before nursing (P < 0.05), with markedly lower urea nitrogen and serum creatinine levels and markedly higher serum albumin and prealbumin levels in RG than in CG (P < 0.05).

Table 2 Biochemical markers in the two groups before and after nursing ( $\bar{x} \pm sd$ )

|           |         | Urea 1<br>(mmol/I         | nitrogen             | Serum ci              | reatinine            | Hemoglo           | bin              | Albumin           | l              |
|-----------|---------|---------------------------|----------------------|-----------------------|----------------------|-------------------|------------------|-------------------|----------------|
| Grou<br>p | n       | Befor<br>e<br>nursin<br>g | After<br>nursin<br>g | Before<br>nursing     | After<br>nursin<br>g | Before<br>nursing | After<br>nursing | Before<br>nursing | After nursing  |
| RG        | 11<br>6 | 17.19<br>±3.23            | 8.95±2<br>.11        | 809.13<br>±121.0<br>3 | 413.76<br>±98.45     | 90.36±<br>10.21   | 114.67±<br>11.23 | 15.53±<br>2.56    | 28.85±<br>3.32 |

Heng Yin et al.

Effect of Nutritional Nursing on the Quality of Life, Nutritional Status, and Complications in Elderly Uremic Patients Receiving Peritoneal Dialysis


| CG | 89 | $17.20 \\ \pm 3.21$ | 11.67±<br>2.15 | 807.25<br>±122.4<br>6 | 653.37<br>±99.38 | $91.04 \pm \\ 10.18$ | 105.28±<br>11.09 | 15.37±<br>2.58 | 26.34±<br>3.29 |
|----|----|---------------------|----------------|-----------------------|------------------|----------------------|------------------|----------------|----------------|
| t  | -  | 0.022               | 9.073          | 0.109                 | 17.200           | 0.473                | 5.966            | 0.442          | 5.386          |
| P  | -  | 0.982               | < 0.001        | 0.912                 | < 0.001          | 0.636                | < 0.001          | 0.658          | <<br>0.001     |

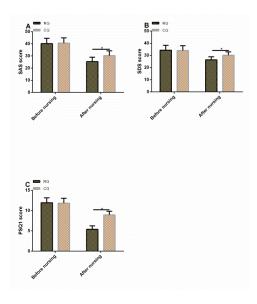
## Comparison of the Mqsga Score between the Two Groups before and after Nursing

The two groups were not markedly different in the MQSGA score before nursing (P > 0.05). After nursing, the MQSGA score

markedly decreased in the two groups (P < 0.05), with a notably lower MQSGA score in RG than in CG (P < 0.05), as shown in Figure 1.

Figure 1 MQSGA scores in the two groups before and after nursing.




Before nursing, the MQSGA score in RG was not different from that in CG; after nursing, the MQSGA score in RG was remarkably lower than that in CG.


Note: \*P < 0.05 when the two groups are compared

# Comparison of the SAS Score, SDS Score, and PSQI Score between the Two Groups before and after Nursing

The two groups were not markedly different in the SAS score, SDS score, and PSQI score before nursing (P > 0.05). As shown in Figure 2, the SAS score, SDS score, and PSQI score markedly decreased after nursing in the two groups, with a markedly lower SAS score, SDS score, and PSQI score in RG than in CG (P < 0.05).

Figure 2. The SAS score, SDS score, and PSQI score in the two groups before and after nursing.





- A. Before nursing, the SAS score in RG was not different from that in CG; after nursing, the SAS score in RG was remarkably lower than that in CG.
- B. Before nursing, the SDS score in RG was not different from that in CG; after

nursing, the SDS score in RG was remarkably lower than that in CG.

C. Before nursing, the PSQI score in RG was not different from that in CG; after nursing, the PSQI score in RG was remarkably lower than that in CG.

Note: \* P < 0.05 when the two groups are compared

### Comparison of Inflammatory Factors between the Two Groups

The two groups were not markedly different in concentrations of IL-6, TNF- $\alpha$  and hs-CRP before nursing (P > 0.05). As shown in Table 3, after nursing, concentrations of inflammatory factors markedly decreased in the two groups, with markedly lower levels of IL-6, TNF- $\alpha$  and hs-CRP in RG than in CG (P < 0.05).

Table 3
Inflammatory factors in the two groups before and after nursing (x ± sd)

|       | hs-CRP (mg/ml) |                | TNF- $\alpha$ (pg/ml) |                | IL-6 (ng/ml)  |                |                 |
|-------|----------------|----------------|-----------------------|----------------|---------------|----------------|-----------------|
| Group | n              | Before nursing | After nursing         | Before nursing | After nursing | Before nursing | After nursing   |
| RG    | 116            | 20.09±5.21     | 9.36±2.21             | 17.38±2.78     | 10.38±2.28    | 89.34±7.       | .13.34±2<br>.45 |
| CG    | 89             | 19.94±5.28     | 12.47±2.78            | 3 17.36±2.56   | 13.76±2.32    | 88.45±7.       | .15.89±2<br>.67 |
| t     | -              | 0.203          | 8.923                 | 0.052          | 10.440        | 0.854          | 7.103           |
| P     | -              | 0.839          | < 0.001               | 0.957          | < 0.001       | 0.394          | < 0.001         |

#### Comparison of Complications During Nursing between the Two Groups

Complications occurred in both groups during nursing. As shown in Table 4, the

complication rate in RG was remarkably lower than that in CG (4.31% vs. 14.61%, P < 0.05).

Table 4
Complications during nursing in the two groups [n (%)]

| Factors                  | RG (n = 116) | CG (n = 89) | $\chi^2$ | P     |
|--------------------------|--------------|-------------|----------|-------|
| Clogging of the catheter | 1 (0.86)     | 3 (3.37)    | 1.657    | 0.198 |
| Peritonitis              | 0 (0.00)     | 3 (3.37)    | 3.968    | 0.046 |

| Leakage of peritoneal dialysis solution | 2 (1.72) | 4 (4.49)   | 1.360 | 0.244 |
|-----------------------------------------|----------|------------|-------|-------|
| Anemia                                  | 2 (1.72) | 3 (3.37)   | 0.574 | 0.449 |
| Incidence of complications              | 5 (4.31) | 13 (14.61) | 6.666 | 0.009 |

#### Comparison of the Quality of Life after Nursing between the Two Groups

As shown in Table 5, after nursing, the scores of all items of the QLQ-C30 scale

(physiological function, health status, physical function, mental health, social function, and emotional function) in RG were remarkably higher than those in CG (P < 0.05).

Table 5 Quality of life after nursing  $(x \pm sd)$ 

| Group        | Physiologic al function | Health status | Physical function | Mental<br>health | Social function | Emotiona 1 function |
|--------------|-------------------------|---------------|-------------------|------------------|-----------------|---------------------|
| RG (n = 116) | 59.45±8.22              | 62.56±7.44    | 64.68±8.33        |                  | 57.12±7.1<br>2  | 63.02±8.<br>12      |
| CG (n = 89)  | 54.67±7.67              | 58.38±7.42    | 61.08±6.45        | 51.34±7.<br>21   | 51.65±7.0<br>9  | 59.44±8.<br>15      |
| t            | 4.248                   | 3.992         | 3.374             | 6.323            | 5.462           | 3.124               |
| P            | < 0.001                 | < 0.001       | 0.001             | < 0.001          | 0.001           | 0.002               |

Comparison of the Nursing Satisfaction between the Two Groups

As shown in Table 6, the nursing satisfaction rate in RG was remarkably higher than that in CG (93.97% vs. 79.78%, P < 0.05).

Table 6
Nursing satisfaction level in the two groups [n (%)]

| Factors               | RG (n = 116) | CG (n = 89) | $\chi^2$ | P     |
|-----------------------|--------------|-------------|----------|-------|
| Great satisfaction    | 64 (55.17)   | 32 (35.96)  | -        | -     |
| Moderate satisfaction | 45 (38.79)   | 39 (43.82)  | -        | -     |
| Dissatisfaction       | 7 (6.03)     | 18 (20.22)  | -        | -     |
| Satisfaction rate     | 109 (93.97)  | 71 (79.78)  | 9.470    | 0.002 |

#### **DISCUSSION**

Uremia in senior people marks the end stage of many life-threatening chronic kidney diseases [23]. It is mainly induced by the

decline of glomerular filtration and disordered water-electrolytes, accompanied by the production and retention of toxic metabolites, which affects the nerves, digestive tract, and blood of patients [24]. Clinically, blood purification technology is prevalent in treating uremia [25, 26].

Here we performed the nutritional nursing on elderly uremic patients on PD and found that the condition of patients was markedly improved after the nursing intervention. Nutritional nursing is nursing and nutrition interventions tailored to the patient's physical condition and disease condition [27]. The study by Wang J et al. [28] showed that nursing interventions (including interventions of education, cognition, and behavior) could effectively improve treatment compliance of patients on dialysis for treating end-stage renal diseases. The study by Hernandez Morante II et al. [29] revealed that the fatality and disease prevalence in patients with chronic renal failure receiving dialysis were reduced by enhancing the nutritional status of patients. In the present study, the improvement in urea nitrogen, blood creatinine, serum albumin, and prealbumin after nursing was more obvious in RG than in CG, indicating that the nutritional nursing can enhance the health condition of patients and boost the recovery of renal function. Here, patients from RG had remarkably lower MQSGA scores which reflect the nutritional status than patients from CG, indicating that nutritional nursing significantly enhance the physical condition of patients, promote nutritional absorption, and accelerate the recovery of physical function. Anxiety and depression are common in patients on dialysis, accompanied by markedly decreased sleep quality and poor mental health, which impair the quality of life and lead to poor clinical outcomes [30, 31]. Here the decrease in the SAS score, SDS score, and PSQI score of patients after nursing was markedly sharper in RG than in CG, indicating that the psychological intervention in nutritional nursing can effectively relieve the negative emotions of patients, encourage patients to fight the disease positively to eliminate fear, depression, and anxiety, thereby improving the sleep quality of patients.

Inflammation is considered as the main cause of disease prevalence and fatality in uremic patients on dialysis, and reducing the inflammatory response can improve the treatment efficacy of patients [32]. Here the decrease in concentrations of serum IL-6,  $TNF-\alpha$ , and hs-CRP of patients was markedly sharper in RG than in CG, indicating that the

nutritional nursing intervention is superior in inhibiting the inflammation in elderly patients uremia and relieving micro-inflammatory. The complication rate in RG after nursing was remarkably lower than that in CG, indicating that nutritional intervention can effectively reduce the risk of complications during PD treatment. Patients on dialysis generally have poor quality of life [33]. A study [34] suggests that medical staff should analyze the physical condition of patients and take corresponding interventions to enhance the nutrition and quality of life of patients. Here, quality of life scores of patients in RG were remarkably higher than those in CG, which indicates that nutritional nursing is efficient in enhancing the quality of life of patients after dialysis[35]. We noted a higher satisfaction level with nursing in RG than in CG, suggesting that nutritional nursing is preferred by patients.

This study confirmed the benefits of nutritional nursing for elderly uremic patients receiving PD, but there are some limitations. For example, we did not assess the treatment compliance, nor did we analyze the risk factors of poor prognosis in elderly uremic patients. We should address such problems in the future to perfect this study.

In summary, nursing intervention for elderly uremic patients receiving PD can enhance the quality of life of patients, improve the nutrition, promote the recovery from the disease, and reduce the incidence of complications.

#### REFERENCES

- Shang W, Shen Y, Gao S, Feng G, Feng Y, Wang Z and Zhang X. Comparison of HLA-A, -B and -DRB1 Loci Polymorphism between Kidney Transplants of Uremia Patients and Healthy Individuals in Central China. PLoS One 2016; 11:e0165426.
- Sun M, Dong Y, Wang Y, Li G and Huang D. Assessment of the left ventricular function in patients with uremia using layer-specific 2-dimensional speckle tracking echocardiography. Medicine (Baltimore) 2019; 98:e14656.
- 3. Scherer A, Gunther OP, Balshaw RF, Hollander Z, Wilson-McManus J, Ng R, McMaster WR, McManus BM and Keown PA. Alteration of human blood cell transcriptome in uremia. BMC Med Genomics 2013; 6:23.
- 4. Cheng L and Yonggui W. Co-Expression Analysis of Blood Cell Genome Expression to Preliminary

- Investigation of Regulatory Mechanisms in Uremia. Med Sci Monit 2017; 23:38-45.
- Ferrantelli E, Liappas G, Keuning ED, Vila Cuenca M, Gonzalez-Mateo G, Verkaik M, Lopez-Cabrera M and Beelen RH. A Novel Mouse Model of Peritoneal Dialysis: Combination of Uraemia and Long-Term Exposure to PD Fluid. Biomed Res Int 2015; 2015:106902.
- Schoorl M, Schoorl M, Nube MJ and Bartels PC. Coagulation activation, depletion of platelet granules and endothelial integrity in case of uraemia and haemodialysis treatment. BMC Nephrol 2013; 14:72.
- 7. Hsu SY and Huang HS. [Improving Depression, Hope, and Quality of Life in Dialysis Patients Using Health Promotion Education Groups]. Hu Li Za Zhi 2019: 66:29-39.
- 8. Park OL and Kim SR. Integrated self-management program effects on hemodialysis patients: A quasi-experimental study. Jpn J Nurs Sci 2019; 16:396-406.
- Ipema KJ, Struijk S, van der Velden A, Westerhuis R, van der Schans CP, Gaillard CA, Krijnen WP and Franssen CF. Nutritional Status in Nocturnal Hemodialysis Patients - A Systematic Review with Meta-Analysis. PLoS One 2016; 11:e0157621.
- 10. Yamashita M, Komatsu R, Maruyama Y, Takaki T, Ichinose H, Sasaki O, Sawase K, Harada T and Funakoshi S. [Dietary approach to improving the nutritional status in institutionalized elderly hemodialysis patients with a poor dietary intake:a single-arm pilot study]. Nihon Ronen Igakkai Zasshi 2018; 55:90-97.
- 11. Nobahar M and Tamadon MR. Barriers to and facilitators of care for hemodialysis patients; a qualitative study. J Renal Inj Prev 2016; 5:39-44.
- 12. van Noort HHJ, Heinen M, van Asseldonk M, Ettema RGA, Vermeulen H, Huisman-de Waal G and On the behalf of the Basic Care Revisited Research g. Using intervention mapping to develop an outpatient nursing nutritional intervention to improve nutritional status in undernourished patients planned for surgery. BMC Health Serv Res 2020; 20:152.
- 13. Tieland M, Beelen J, Laan ACM, Poon S, de Groot L, Seeman E, Wang X and Iuliano S. An Even Distribution of Protein Intake Daily Promotes Protein Adequacy but Does Not Influence Nutritional Status in Institutionalized Elderly. J Am Med Dir Assoc 2018; 19:33-39.
- 14. Liu HY, Tseng MY, Li HJ, Wu CC, Cheng HS, Yang CT, Chou SW, Chen CY and Shyu YI. Comprehensive care improves physical recovery of hip-fractured elderly Taiwanese patients with poor nutritional status. J Am Med Dir Assoc 2014;

- 15:416-422.
- 15. Ebrahimi H, Sadeghi M, Amanpour F and Dadgari A. Influence of nutritional education on hemodialysis patients' knowledge and quality of life. Saudi J Kidney Dis Transpl 2016; 27:250-255.
- 16. Underwood CF, Hildreth CM, Wyse BF, Boyd R, Goodchild AK and Phillips JK. Uraemia:an unrecognized driver of central neurohumoral dysfunction in chronic kidney disease? Acta Physiol (Oxf) 2017; 219:305-323.
- 17. Hornbeck PV. Enzyme-Linked Immunosorbent Assays. Curr Protoc Immunol 2015; 110:2 1 1-2 1 23
- 18. Yigit IP, Ulu R, Celiker H and Dogukan A. Evaluation of nutritional status using anthropometric measurements and MQSGA in geriatric hemodialysis patients. North Clin Istanb 2016; 3:124-130.
- 19. Dunstan DA and Scott N. Norms for Zung's Self-rating Anxiety Scale. BMC Psychiatry 2020; 20:90
- 20. Wu JJ, Zhang YX, Du WS, Jiang LD, Jin RF, Yu HY, Liu JM and Han M. Effect of Qigong on self-rating depression and anxiety scale scores of COPD patients: A meta-analysis. Medicine (Baltimore) 2019; 98:e15776.
- 21. Farah NM, Saw Yee T and Mohd Rasdi HF. Self-Reported Sleep Quality Using the Malay Version of the Pittsburgh Sleep Quality Index (PSQI-M) In Malaysian Adults. Int J Environ Res Public Health 2019; 16:
- 22. Burlacu A, Artene B, Nistor I, Buju S, Jugrin D, Mavrichi I and Covic A. Religiosity, spirituality and quality of life of dialysis patients:a systematic review. Int Urol Nephrol 2019; 51:839-850.
- 23. Yang M, Bai YH, Wang JS, Jiang HY and Hu SL. Preliminary study of Bim on the early diagnosis and prognosis of the elderly uremia with gastrointestinal nutrition combined with dialysis. Eur Rev Med Pharmacol Sci 2018; 22:4598-4603.
- 24. Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin Pract 2014; 128:303-311.
- 25. Lu W, Jiang GR and Group HHvHt. Randomised, open-label, multicentre trial comparing haemodialysis plus haemoperfusion versus haemodialysis alone in adult patients with end-stage renal disease (HD/HP vs HD): study protocol. BMJ Open 2018; 8:e022169.
- 26. Watanabe Y and Okada H. Effect of Combined Peritoneal Dialysis and Hemodialysis on Health-Related Quality of Life. Contrib Nephrol 2018; 196:135-140.
- 27. Lee LC, Tsai AC, Wang JY, Hurng BS, Hsu HC

- and Tsai HJ. Need-based intervention is an effective strategy for improving the nutritional status of older people living in a nursing home:a randomized controlled trial. Int J Nurs Stud 2013; 50:1580-1588.
- 28. Wang J, Yue P, Huang J, Xie X, Ling Y, Jia L, Xiong Y and Sun F. Nursing Intervention on the Compliance of Hemodialysis Patients with End-Stage Renal Disease: A Meta-Analysis. Blood Purif 2018; 45:102-109.
- 29. Hernandez Morante JJ, Sanchez-Villazala A, Cutillas RC and Fuentes MC. Effectiveness of a nutrition education program for the prevention and treatment of malnutrition in end-stage renal disease. J Ren Nutr 2014; 24:42-49.
- 30. Schouten RW, Haverkamp GL, Loosman WL, Chandie Shaw PK, van Ittersum FJ, Smets YFC, Vleming LJ, Dekker FW, Honig A and Siegert CEH. Anxiety Symptoms, Mortality, and Hospitalization in Patients Receiving Maintenance Dialysis:A Cohort Study. Am J Kidney Dis 2019; 74:158-166.
- 31. Liao JL, van den Broek-Best O, Smyth B, Hong D, Vo K, Zuo L, Gray NA, Chan CT, de Zoysa J, Perkovic V, Jiang L and Jardine M. Effect of extended hours dialysis on sleep quality in a randomized trial. Nephrology (Carlton) 2019; 24:430-437.
- 32. Samadian F, Dalili N, Poor-Reza Gholi F, Fattah M, Malih N, Nafar M, Firoozan A, Ahmadpoor P, Samavat S and Ziaie S. Evaluation of Curcumin's effect on inflammation in hemodialysis patients. Clin Nutr ESPEN 2017; 22:19-23.
- Gerasimoula K, Lefkothea L, Maria L, Victoria A, Paraskevi T and Maria P. Quality of Life in Hemodialysis Patients. Mater Sociomed 2015; 27:305-309.
- 34. Kim HW and Choi-Kwon S. [Structural equation modeling on quality of life in pre-dialysis patients with chronic kidney disease]. J Korean Acad Nurs 2012; 42:699-708.
- 35. Wang Gaihua, Zhang Tianlun, Dai Yingying, Lin Jinheng and Chen Lei. A Serial-Parallel Self-Atte ntion Network Joint With Multi-Scale Dilated C onvolution, IEEE Access, 9(5), 2021: 71909-719 1.DOI: 10.1109/ACCESS.2021.3079243