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Abstract

In this study, a predictive QSPR (quantitative structure—property relationship) model was
developed using Dragon descriptors to estimate the lipophilicity (LogKow) of aromatic aldehydes.
The model was constructed with a dataset of 77 compounds and utilized multiple linear regression
analysis, along with the combination of the ordinary least square regression method and genetic
algorithm-based variable subset selection. The resulting model exhibited a high correlation
coefficient (R2) of 88.71% and a standard error of estimation (s) of 0.324 log unit, indicating its
reliability. Further validation was performed on an independent test set of 23 compounds,
demonstrating the model's effectiveness in predicting the lipophilicity of new aromatic aldehydes.
This valuable information can aid in drug design and optimization efforts, potentially facilitating
the development of novel pharmaceuticals.
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1. Introduction

Aromatic aldehydes are derivatives of aromatic compounds that contain a carbonyl group
attached to an aromatic ring. They can be selectively labeled at the formyl position through
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various methods, such as reduction of esters with LiAID4 followed by oxidation, reaction of
amides with deuterated Schwartz's reagent, reductive carbonylation of aryl halides via Pd/Rh-
cocatalyzed reactions, or deoxygenative deuteration of carboxylic acids with synergistic
photoredox and organic catalysis [1-4]. Electron-withdrawing groups attached to the aromatic
ring of aldehydes can enhance their reactivity when compared to electron-donating groups [5].
This property makes them valuable for synthesizing a diverse range of compounds. For instance,
researchers have discovered a method to synthesize benzothiazoles by condensing 2-
aminobenzenethiol and aromatic aldehydes in refluxing toluene at 110 °C [6]. Furthermore, the
photophysical properties of aromatic aldehydes are summarized in the study, highlighting their
potential application as photoinitiators in polymerization reactions. These organic synthesis
applications were discussed in a prior work [7].

In drug discovery and development, lipophilicity represents a fundamental physicochemical
property that holds significant importance [8,9]. The logarithmic partition coefficient (logP) is a
key measure of lipophilicity and plays a crucial role in medicinal chemistry [10,11]. It serves as a
highly informative and effective parameter in this field, affecting various aspects of drug behavior,
including solubility, membrane permeability, potency, selectivity, promiscuity, metabolism,
pharmacokinetics, pharmacodynamics, and toxicological profile [12, 13]. As a result, lipophilicity
significantly influences the ADMET (absorption, distribution, metabolism, excretion, and
toxicity) characteristics of drugs.

Lipophilicity serves as a crucial parameter in various fields, including pharmacology, medicine,
food science, chemical industry, fragrance development, and environmental protection [16]. To
assess this property, the octanol-water partition coefficient (K,,) is commonly used, representing
a substance's solubility in both aqueous and organic phases [14]. Specifically, the logarithmic
partition coefficient (logK,,) or n-octanol/water partition ratio plays a vital role in environmental
risk assessment of chemicals, enabling estimation of environmental fate, bioavailability, exposure,
and toxicity of compounds [15].

Given the significance of logK,,, exploring its relationship with the molecular structure of
compounds becomes imperative. This investigation is facilitated by employing the quantitative
structure-rroperty relationship (QSPR) approach. QSPR allows for the study of the quantitative
relationship between molecular descriptors and various properties or characteristics of
compounds, such as logK,,.

In recent years, the application of Quantitative Structure-Activity Relationship (QSAR) and
QSPR approaches has seen a rising trend across diverse disciplines, particularly in drug design
[17]. These quantitative modeling techniques have become invaluable tools for predicting a wide
array of properties and activities of chemical compounds. Their efficacy has been demonstrated
in predicting physicochemical properties, biological activity, toxicity, chemical reactivity, and
metabolism of chemical compounds [18-22].

Presently quantitative structure-activity relationships (QSAR) remain one of the most frequently

employed techniques for the discovery of novel and effective compounds against various diseases,
including malaria [23], diabetes [24], cancer [25], and many others. AQSAR model is defined as

an equation that incorporates molecular descriptors that have a significant impact on a specific
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biological activity. These molecular descriptors serve as quantitative representations of the
chemical and structural features of compounds, allowing for the prediction of their activity or
potency.

QSPR models are mathematical relationships established between molecular descriptors and
target properties, aiming to predict specific properties based on the molecular structure [26].
Various modeling techniques, including multiple linear regressions (MLR) and artificial neural
networks, are commonly employed to develop QSPR models [27].

The objective of the current study is to construct a robust QSPR model capable of predicting the
Lipophilicity (logK,,) values for a collection of aromatic aldehydes. To achieve this, general
molecular descriptors are computed using DRAGON software, which provides comprehensive
information about the chemical and structural features of the compounds.

2. Materials and Methods
2.1. Data set

The selection of 77 aromatic aldehyde compounds and their corresponding experimental log K.,
values was derived from the study conducted by Schultz and Netzeva [29]. The log K, values
obtained from this research ranged from 0.79 to 3.89, as mentioned in Table 1 of the Results
and Discussion section. To facilitate model development and evaluation, the dataset was divided
into a training set and a test set.

2. 2 Descriptors Generation

The structural representation of the compounds under study holds immense significance in
describing, communicating, and elucidating essential structural information based on their
specific characteristics [30]. In the investigation of quantitative structure-property relationships
(QSPR), the numerical representation of chemical structures through molecular descriptors plays
a crucial role.To accomplish this, the molecules were initially created using the Hyperchem
package (Version7.5) [31]. Subsequently, these molecular structures underwent pre-optimization
utilizing the MM+ molecular mechanics force field. The final geometries of the minimum energy
conformations were attained through more precise optimization employing the semi-empirical
PM3 method. For the optimization process, a gradient limit of kcal/A was utilized as a stopping
criterion to obtain optimized structures. Subsequently, these optimized structures served as input
for the generation of 1664 molecular descriptors from 20 different classes. Various classes of
molecular descriptors were employed in this study, encompassing Constitutional, Topological,
Geometrical, Charge, GETAWAY (Geometry, Topology, and Atoms Weighted Assembly),
WHIM (Weighted Holistic Invariant Molecular descriptors), and 3D-MoRSE (3D-Molecular
Representation of Structure based on Electron diffraction). The generation of these molecular
descriptors was facilitated by utilizing Dragon software (version 5.4) [28]. During a preliminary
step, constant values and descriptors exhibiting pairwise correlation were eliminated. If the
pairwise correlation between descriptors exceeded 98%, one of the variables was removed.
Subsequently, a genetic algorithm was employed for the selection of variables, resulting in a final
set of descriptors.
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2.3 Training and test sets Selection

To ensure the generation of a reliable model and to evaluate its predictive capability, it is essential
to define a suitable training set and an external test set. The goal is to create two sets that exhibit
comparable molecular diversity and encompass a wide range of structural and physicochemical
properties present in the complete dataset. Typically, the test set should comprise between 15%
and 40% of the compounds in the entire dataset. This ensures a reasonable representation of the
data for evaluation purposes.

In this study, the data were separated into two independent subsets using the DUPLEX
algorithm: a training set consisting of 54 compounds was used to build the model, while a test set
containing the remaining 23 compounds was utilized to assess the model's predictive ability.

2.4 Model Development and Validation

For the analysis, MobyDigs software [32] was used to perform multiple linear regression (MLR)
and variable selection. To conduct the regression, the Ordinary Least Square (OLS) method and
Genetic Algorithm-Variable Subset Selection (GA-VSS) [33] were employed. The GA-VSS
generated a series of 100 regression models, ranked based on their internal predictive
performance in descending order. These models were then validated using R2CV. The validated
models with fewer descriptors were found to have lower R2CV values. To explore various low-
dimensional combinations, models with 1-2 variables were initially developed using the all-subset
method. Then, the number of descriptors was incrementally increased, and new models were
created. The top models at each rank were selected, and the final model was chosen from among
them. This selection process aimed to ensure sufficient correlation while avoiding over-
parameterization, which could lead to reduced predictive ability for molecules not in the training
set. The recommended statistical guideline of n/m > 5 (where n is the number of samples and m
is the number of descriptors) was considered [34]. The genetic algorithm was terminated when
the R2CV value showed no significant improvement despite the model's size increase.
Collinearity among the selected molecular descriptors was assessed using the QUIK rule (Q
Under Influence of K) [35], a vital condition for the model's validity.

Due to the collinearity effect observed in the initial set of molecular descriptors, a large number
of models with similar predictive power were generated in MOBYDIGS using different
dimensionalities. To address this issue and avoid selecting models with comparable performance,
a selection process was implemented to identify high-performance models. These models were
chosen based on the difference in the K index (AK), calculated as Kxy - Kxx, and subsequently
subjected to a thorough validation process. the quick rule mentioned in the study compares the
multivariate correlation index KX, which is calculated from the X-block of predictor variables,
with the multivariate correlation index KXY, obtained by augmenting the X-block matrix with a
column representing the response variable. According to this rule, if KXY is greater than KX, the
model is considered predictive [36]. In the specific case mentioned, the values obtained for these
two indexes in the problem were KX = 37.02 and KXY = 45.14. As a result, based on this quick
rule, the obtained model is deemed predictive since KXY is greater than KX (KXY > KX). This

implies that the augmented model, which takes into account the relationship between the
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predictor variables and the response variable, exhibits a higher level of predictive power compared
to the original model.

The model's performance was evaluated based on parameters related to its predictive capability
(R’CV), fitting power (R?), standard deviation error in prediction (SDEP), standard deviation
error in calculation (SDEC), and standard error of estimation (s) within the domain of
chemicals. To ensure the reliability and stability of the QSPR model developed using the MLR
method, both internal and external validations were conducted. The quality and reliability of the
fitting were initially assessed by calculating the coefficient of determination (R’) between the
experimental and calculated values of the training set particles. This assessment is represented by
equation (1):

0
Where yi, §,and  are the observed, calculated and mean values of the lipophylicity, respectively.

The adjusted R” : Gives the percentage of variation explained by only the independent variables
that actually affect the dependent variable. The formula is given by the equation (2):

D

where n and m are the numbers of observations and descriptors, respectively.

)

Cross-validation is a widely used method for assessing the model's robustness. It involves creating
modified data sets by systematically excluding one or a small group of molecules in each
iteration, known as "leave-one-out" and "leave-some-out” procedures [37-39].

In this study, the internal predictive capability of the model was evaluated using the leave-one-
out cross-validation technique (R2CV). The mathematical expression for this evaluation is as

follows:

S5CT - PRESS

b |
PRESS = % |y -, (4)
SCT =3 vy, -v) (5)

The model generated using the initial selected objects is employed to predict values for the
excluded sample, and subsequently, the (R°CV) is calculated for each model. To ensure
robustness, bootstrapping was repeated 8000 times. However, obtaining a robust model does not
provide insights into its prediction power.
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To assess the model's predictive capability, the compounds in the test set are utilized for
evaluation. The R*CV external (R°*CVext) for the test set is determined using equation (6):

) E lyi = %)
R Ve = 1- :-_:-1
T [‘.-'-: _T - | :
FAFRRE )
= ©)

Where n ., and n, are the number of objects in the external set (or left out by bootstrap) and n,
the number of training set objects, respectively.

The standard deviation error in calculation (SDEC) with equation (7).

e (7)
2 (v =1y

“Jn in

The standard deviation error in prediction (SDEP) with equation (8)

SDEC =

SDEP = [ PRESS/n 3

The external standard deviation error of prediction (SDEP,,), defined as:

| = 1)
RYRTOF S — S ' -
\/H_,_‘/_'{'” _l:l

2.5 Analysis of Applicability Domain

The notion of the applicability domain (AD) [40, 41] pertains to a theoretical region in the
descriptor space utilized by a model and its corresponding modeled response. This region defines
the scope within which the model can offer dependable predictions. In this study, the
applicability domain of the QSAR models was described using the leverage (hii) approach [42].
The leverage approach utilizes the concept of leverage, denoted as hii, to determine the
applicability domain. The warning leverage, h*, is typically set at a value of 3(K + 1)/n, where n
represents the total number of samples in the training set, and K is the number of descriptors
involved in the correlation. By setting this threshold, the leverage values beyond h* are
considered indicative of potential outliers. To identify both response oudliers (Y outliers) and
structurally influential compounds (X outliers), the Williams plot [43] was employed. This plot
involves the graphical representation of standardized residuals versus leverage values. By analyzing
the distribution of data points on the Williams plot, it becomes possible to detect samples that
exhibit significant deviations from the expected behavior. Such outliers can correspond to either
unusual response values or structurally unique compounds that exert a disproportionate influence
on the model.

3. Results and Discussion

In this study, a total of 77 compounds representing aromatic aldehydes were selected due to their
significant interactive activity. The hydrophobicity of these compounds was quantified using the
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logarithmic logK,, values, which ranged from 0.42 to 3.96. The logK,, values for each
compound are listed in Table 1. In this study, MLR was employed to establish a relationship
between the logK, values and descriptors from different blocks. The resulting equation model
consists of five variables and exhibits good statistical parameters for the training set. Additionally,
it demonstrates high generalization and prediction ability for the prediction set, as indicated in
Tables The 1 and 2. The derived MLR equation model, denoted as equation (10), describes the
relationship between the logK,, values and the selected descriptors. Unfortunately, the specific

equation is not provided in the given text, so it cannot be regenerated.

LogKow = -3,00841 -0,15428 RDF050m -0,77374Mor03p +2,75239 Mor24p +0,58083HIC-
0,74133BLTF96 (10)

Where, RDF050m is the Radial Distribution Function - 5.0 / weighted by atomic

masses [44]; Mor03p is the signal 03/weighted by polarizability [45]; Mor24p is the 3D-
MoRSE-signal 24 / weighted by atomic polarizabilities [46]; HIC information content on the
leverage magnitude [47]; BLTF96 is the Verhaar model of algae base-line toxicity from MLOGP
(mmol") [48]. The characteristics and specifications related to the descriptors computed using
the MLR technique and present in the model are listed in Table3.

The positive correlation of the Mor24p with the HIC shows that an increase in the values of
these factors implies a increase in the value of the logk,,, while the negative correlation of the
RDFO050m with the Mor03p and BLTF96 shows that an increase in the values of these factors
implies a decrease in the value of the logk,,.

Table 1. Experimental and pretectedLogK,, for the studied aromatic aldehydes

Id Object logk,.(exp) | logk..(pred) | Err. Std.Err.
(Pred) | (pred)
1 1-Naphthaldehyde 2,67 2,95 0,28 0,9
2 2.3,5-Trichlorobenzaldehyde | 3,69 3,64 20,05 20,18
3 2,3-Dihydroxybenzaldehyde | 1,03 1,13 0,1 0,31
4 2,4,5-Trimethoxybenzaldehyde | 1,19 0,81 20,38 1,37
5 2,4 Dihydroxybenzaldehyde | 1,33 1,15 20,18 20,59
G 2,4-Dimethoxybenzaldehyde | 1,79 1,53 20,26 20,88
7 2,5-Dihydroxybenzaldehyde | 1,33 1,01 20,32 1,04
8 2-Bromobenzaldehyde 2,48 2,43 20,05 20,17
9 2-Chloro-4- 0,93 1,57 0,65 2,09
hydroxycarboxaldehyde
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10 2-Chloro-5-nitrobenzaldehyde | 2,25 1,82 -0,43 -1,47

11 2-Chloro-6-fluorobenzaldehyde | 2,51 2,58 0,07 0,23

12 2-Fluorenecarboxaldehyde 3,43 3,54 0,11 0,37

13 2-Fluorobenzaldehyde 1,76 2,12 0,36 1,15

14 2-Hydroxy-1-naphthaldehyde 2,99 2,44 -0,55 -1,78

15 2-Hydroxy-3- 1,84 1,5 -0,34 -1,12
nitrocarboxaldehyde

16 2-Hydroxybenzaldehyde 1,81 1,39 -0,42 -1,32

17 2-Tolualdehyde 2,26 2 -0,26 -0,82

18 3,4,5-Trihydroxybenzaldehyde | 0,42 0,9 0,48 1,61

19 3,4-Dihydroxybenzaldehyde 1,03 1,12 0,09 0,3

20 3,5-Dibromo-4- 3,3 3,68 0,38 1,39
hydroxycarboxaldehyde

21 3,5-Dibromosalicylaldehyde 3,42 3,48 0,06 0,23

22 3-Anisaldehyde 1,71 1,65 -0,06 -0,19

23 3-Bromo-4- 3,42 2,33 -1.09 ** | -3,48
hydroxycarboxaldehyde

24 3-Chloro-2-fluoro-5- 2 2,94 0.94 * 3,69
(trifluoromethyl)benzaldehyde

25 3-Chlorobenzaldehyde 2,26 2,3 0,04 0,14

26 3-Cyanobenzaldehyde 1,18 1,43 0,25 0,78

27 S—Ethoxy—z— 2,17 1,88 -0,29 -0,93
hydroxycarboxaldehyde

28 3-Ethoxy-4- 1,01 1,69 0,67 2,16
hydroxybenzaldehyde

29 3-Fluorobenzaldehyde 1,76 2 0,24 0,77

30 3-Hydroxy-4- 0.97 1,13 0,16 0,5
methoxybenzaldehyde

31 3-Hydroxy-4- 1,42 1.25 0,18 | -0,56
nitrobenzaldehyde

TobRegul Sci.™ 2024;10 (1):2074 - 2092 2081




B. Souyei et al.
Prediction of Molecular Lipophilicity for Aromatic Aldehydes to Tetrahymena

Pyriformis Using QSPR Approach

32 3-Hydroxybenzaldehyde 1,38 14 0,02 0,07
33 3-Methoxy-4- 1,21 1,17 0,04 |-0,11
hydroxybenzaldehyde
34 3-Methoxysalicylaldehyde 1,37 1,25 20,12 |-0,39
35 3-Tolualdehyde 1,99 1,93 0,06 |-0,2
36 4-(Pentyloxy)benzaldehyd 3,89 413 0,24 0,87
37 4,6-Dimethoxy-2- 1,26 1,64 0,38 1,25
hydroxybenzaldehyde

38 4 Acetamidobenzaldehyde 1,25 1,73 0,48 1,49
39 4 Butoxybenzaldehyde 3,37 3,47 0,1 0,35
40 4Chlorobenzaldehyde 2,13 221 0,08 0,27
41 4 Ethylbenzaldehyde 2,52 2,57 0,05 0,16
) 4 Hydroxy-1-naphthaldehyde | 2,42 2,63 0,21 0,68
43 4 Hydroxybenzaldehyde 1,35 14 0,05 0,17
44 4 Tsopropylbenzaldehyde 2,92 3 0,08 0,26
45 4 Methyl-1-naphthaldehyde | 3,17 2,95 022 |07
46 4 Nitrobenzaldehyde 1,56 1,66 0,1 0,31
47 4 Phenoxybenzaldehyde 3,96 41 0,14 0,52
48 5-Chlorosalicylaldehyde 2,65 1,99 0,66 | -2,09
49 Benzaldehyde 1,48 1,73 0,25 0,78
50 Pentafluorobenzaldehyde 3,39 2,82 0,57 | -1,93
51 Phenanthrene-9-carboxaldehyd | 3,84 3,33 20,51 2,09
52 Phenyl-1,3-dialdehyde 1,36 1,46 0,1 0,3
53 p-Tolualdehyde 1,99 1,92 0,07 | -0,24
54 Terephthaldicarboxaldehyde | 1,36 1,49 0,13 0,41
55 2.3,4-Trihydroxybenzaldehyde* | 0,79 0,85 0,06 0,2
56 2,4,6-Trihydroxybenzaldehyde* | 0,72 1,16 0,44 1,47
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57 2,4-Dichlorobenzaldehyde® 3,08 2,98 0,1 20,32
58 2-Anisaldehyde* 1,72 1,68 0,04 |-0,11
59 2-Chloro-3-hydroxy-4- 1,17 1,06 0,11 20,37
methoxybenzaldehyde*
G0 2-Chlorobenzaldehyde* 2,33 2,38 0,05 0,15
Gl 2-Methyl-1-naphthaldehyde* | 3,17 2,88 029  |-0,92
62 2-Nitrobenzaldehyde* 0,86 1,72 0,86 2,7
63 3,4-Dimethoxy-5- 1,25 1,58 0,33 1,17
hydroxycarboxaldehyde*
G4 3-Bromobenzaldehyde* 2,48 2,63 0,15 0,49
65 3-Nitrobenzaldehyde* 0,65 1,53 0,89 2,83
66 4- 1,81 1,81 0 0
(Dimethylamino)benzaldehyde*
67 4-Anisaldehyde* 1,45 1,56 0,11 0,34
G8 4 Biphenylcarboxaldehyde” 3,38 3.4 0,02 0,05
69 4 Bromobenzaldehyde* 2,48 2,39 0,09 |-0,29
70 4-Cyanobenzaldehyde* 1,21 1,42 0,21 0,66
71 4 Ethoxybenzaldehyde* 2,31 2,14 0,17 |-0,53
72 4 Fluorobenzaldehyde* 1,54 2,03 0,49 1,59
73 4 Hydroxy-3- 1,48 1,14 034 |-1,13
nitrobenzaldehyde*
74 5-Bromosalicylaldehyde* 2.8 2,34 0,46 | -1,46
75 5-Bromovanillin® 1,92 2,39 0,47 1,59
76 5-Hydroxy-2- 1,75 1,16 0,59 | -1,9
nitrobenzaldehyde*
77 6-Chloro-2-fluoro-3- 2,3 2,67 0,37 1,19
methylbenzaldehyde*
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* Members for the test set.

Table 2. The statistical parameters with n,=54, n,=23.

Statistical | n,, Ny Nv R? (%) | R’ (%) R’, (%) Rcven
parameters

54 23 5 88,71 87,54 84,85 82,47
Statistical | F SDEC | s SDEP | SDEP., K, K,
parameters

75,45 | 0,3055 | 0,324 | 0,3539 | 0,381 48,57 40,66

Table 3. Characteristics of the selected descriptors in MLR model.

Variable Reg.coeff. Err.coeff Std.Coeff. | Err.std.coeff.
Constant -4.235691 0.69553 1.39107

RDFO50m | -0.1490972 | 2.80E-02 -0.3072317 | 1.188974
Mor03p -0.720197 0.1496242 -0.3457702 | 1.482311
Mor24p 2.38871353 | 0.8671428 0.14089108 | 1.055392
HIC 0.85788583 | 0.1820004 | 0.27177078 | 1.189704
BLTF96 -0.830512 8.71E-02 -0.674236 1.459617

The generated QSPR model indicates that the logk,, of 54 aromatic aldehydes to Tetrahymena
pyriformis can be explained by the five selected descriptors in equation (10). It is important to
note that the errors in the entire dataset are distributed on both sides of the zero line, suggesting
the absence of any systematic error in the developed model.

The computer model serves two purposes: predicting logK,, and assessing the quality of its fit
through the graph of calculated and predicted values of logK,, compared to experimental values.
Based on this model, the relationship between the observed and computed logK,, is highly
significant. The statistical parameter values of the model are presented in Table 2, and the
corresponding values have been plotted in Figure 1.

Upon examining the statistical coefficients in Table 2, we observe that the QSPR model exhibits
a higher determination coefficient (R* = 0.8871) and a lower standard deviation of errors (SDEC
= 0.3055), indicating its reliability. The model's cross-validation is assessed using the leave-one-
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out (LOO) method, resulting in a notable R’cv value (R’cv = 0.8485). This satisfies the
conditions for predictability as suggested by R. Veerasamy [49] and A. Golbraikh [50]. The
cross-validated MLR model, with an R2cv value of 0.8485, demonstrates its reliability,
sensitivity, and statistical significance. Based on the given conditions, the regenerated statement
can be as follows:

"The MLR model satisfies the following conditions: (1) R is greater than 0.7, (2) R2cv is greater
than 0.6, and (3) the difference between R? and Q2Loo is smaller than 0.1 [51, 52]."

To evaluate the predictive power of the developed model, external validation is employed. This
involves using a set of compounds (remaining 23 compounds) that were not included in the
training of the model. Comparing the values of logKoy-test and logKqy-obs, we observe a good
prediction for the test set compounds (R’cv ext in Table 2). Through these results, we can
conclude that the model exhibits strong predictive performance, and the descriptors employed
effectively describe the partition coefficient.
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Figure 2. Plot of residual vs. experimental logk,, for the entire data set

A comparison between the results of the randomized models and the actual starting model can be
made by plotting essential statistical coefficients, such as R* and Q2. Figure 3 illustrates this
comparison. The statistical values for the modified logkow vectors are notably lower than those
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of the genuine QSPR model, confirming the presence of a meaningful structure-property
relationship.
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Figure 3. Randomization test associated with the previous QSPR model

3.2. Analysis of Descriptor Contribution

Based on the aforementioned procedure [40, 41], we conducted an analysis to determine the
relative importance and contribution of the five descriptors in the model. The results were then
plotted in Figure 4. By examining the figure and considering the percentage of contribution, we
observed that the descriptors decrease in importance in the following order: BLTF96
(27.5635%) > Mor03p (19.1273%) > Mor24p (18.5050%) > RDF050m (18.4442%) > HIC
(16.3600%). It is worth noting that the disparity in descriptor contribution between any two
descriptors utilized in the model is not significant. This finding suggests that all descriptors play
an essential role in constructing the predictive model and none of them can be deemed

dispensable.

RI¥F iSO Aorildp AlarZip HIC BLTFSS
Descriptors

Contribwtben(®a)

Figure 4. Contributions of Selected Descriptors in the MLR Model

3. 3. Domain of applicability

Based on Figure 5, we identified three compounds as outliers, one on the x-axis and the other

two on the y-axis. These outliers are considered outside the scope of the descendant MLR model
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and account for approximately 3.89% of the total compounds studied. Examining the diagram,
we observed one outlier on the x-axis, specifically compound 51, which exhibits a leverage value
higher than the warning limit of 0.33. This oudier is identified as Phenanthrene-9-
carboxaldehyde. Its structure consists of three aromatic rings and one CHO functional group.
Due to the presence of a high number of aromatic rings, this compound exhibits a high value of
lipophilicity (logk,,=3.84). This observation aligns with the findings of Timothy J. et al., who
discovered a strong correlation between lipophilicity and the count of aromatic rings. Their
research suggests that the addition of an aromatic ring often leads to a distinct and statistically
significant increase in clogP [53].

The y-axis outliers in the model are represented by compounds 23 (3-Bromo-4-
hydroxycarboxaldehyde) and 24 (3-Chloro-2-fluoro-5-(trifluoromethyl) benzaldehyde), which
exhibit residuals higher than 30 in the training set. These compounds contain halogen atoms,
specifically bromo, chloride, and fluoride. The presence of these halogen atoms in the molecular
structure influences the lipophilicity of the compounds, resulting in their classification as
outliers.

Gerebtzoff, G. et al., emphasize that halogenation of sp2 carbons is commonly employed to
increase lipophilicity, which can enhance membrane permeability and oral absorption [54].

By removing these outliers, it is possible to improve the cross-validated R* (R’cv) between the
experimental logk,, values and the selected descriptors.
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Figure 3. Williams plot for the descendant MLR model (with h* = 0. 33)
Conclusion

In this study, we employed multiple linear regressions (MLR) to predict the lipophilicity (logK.,)
of aromatic aldehydes to Tetrahymena pyriformis. The analysis involved the development of a
linear model using a series of 77 compounds. The model utilized five parameters. The overall
performance of the prediction was determined to be 88.71%, and the Standard Deviation of
Error of Prediction (SDEC) for the training set was found to be 0.3055. The difference between

R® (coefficient of determination) and R2cv (cross-validated coefficient of determination) is
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significantly less than 0.1. This indicates that the MLR model exhibits significant predictive
power and reliability.

The selected optimal model demonstrates adequate fitting precision and strong predictability, as
supported by the statistical parameters and validation technique employed. As a result, this
model can be effectively utilized for estimating the n-octanol/water partition behavior of
aromatic aldehydes. The descriptors incorporated in this quantitative structure-property
relationship (QSPR) model offer valuable insights into various molecular properties that
contribute to intermolecular interactions affecting the n-octanol-water partition coefficient.
These properties play a crucial role in determining the biological activity of the compounds. this
model, can gain valuable information about the partition behavior of aromatic aldehydes,
enabling us to better understand and predict their biological activity.
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