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Abstract: As known, critical micelle concentration is a crucial characteristic in product formulation.
In the current work, six molecular structure descriptors were used to create QSPR models that
predicted the critical micelle concentration (CMC) of 119 sugar-based surfactants. The analysis of
the qualities of descriptors shows that the micellization process is specifically affected by electronic
properties (electronegativity and charges), electro-topology, and symmetry of a molecule. Four
statistical learning techniques including Multiple linear regression, Partial least square, Artificial
neural networks (ANN), and Adaptive neuro-fuzzy inference system to develop the QSPR models.
different statistical metrics were employed to evaluate the reliability and robustness of the models.
The best result (72= 0.803,Q2 ,= 0.856,Q%,=0.982, andAr;2= 0.006) were obtained for ANN with {6-
6-1} architecture. In addition, estimating the CMC of 6 other sugar surfactants based on simulate of
the network gave very good results (R=0.96). Therefore, these findings suggest that the developed
model is appropriate for predicting and correlating CMC value for sugar-based surfactants.
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1. Introduction

Surfactants are amphiphilic molecules, that is to say, composed of two parts: a polar head that is
hydrophilic anda hydrophobic alkyl chain, thus allowing them to adsorb at the immiscible bulk phases
interface and self-assemble, in the form of aggregates commonly called micelles[1-3]. These properties make
it possible to envisage a wide range of applications, such as detergent, cosmetics, food processing, or even
the pharmaceutical field[2,4]. Depending on the nature of the hydrophilic head, four major surfactant
groups can be dusted: anionic (with a negative charge), cationic (with a positive charge), nonionic

(uncharged), and amphoteric (zwitterions carrying both positive and negative charges)[1].
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Nonionic surfactants, such as sugar-based surfactants, have polar heads consisting of carbohydrates[1]
like glucose[5], maltose[6], or sucrose[7]and their derivatives.Sugar-basedsurfactants have a green chemistry
character as lower toxicity, are biocompatible, and easily biodegradable, and may thus be made from
renewable resources[3,8,9]. Therefore, the pharmaceutical and cosmetics sectors have more favorable
profiles for using sugar-based surfactants[3,10].

A fundamental characteristic of surfactants is their CMC, which is the concentration of surfactants at
which micelles begin to form in solution[3,11]. The polar heads always remain in contact with the aqueous
phase, whereas the alkyl chains are housed in the micellar core during the formation of micelles to reduce
the contact between the hydrophobic part and water molecules[12,13]. Experimentalists observed, that the
CMC of non-ionic surfactantsis affected by polar head size, alkyl chain size, and unsaturated or branched
chains[2,13-15]. Currently, CMC can be determined using a variety of methods, the most common of
which is tensiometry, which involves plotting the surface tension of surfactants versus log concentration
value[1,16]. In silico prediction approaches like QSPR have an early estimation of CMC based on the
knowledge of molecular structure to decrease the time and expense of experimental screening[1,17-19].
The QSPR model establishes a mathematical correlation between a molecular structure and a specific
property using molecular descriptors[1].

Few QSPR models considertaking into account sugar-based surfactants [1,3,13], even though several
QSPR models have been developed to estimate CMC [11,20-25]. Gaudin et al.[1] developed a QSPR
model using the best multiple linear regression of 83 sugar-based surfactants with anRMSE, R ginin g @ 2o
and thest 0f 0.32, 0.93, 0.9, and 0.91 respectively. Additionally, Wang et al.[3] createdan MLR model of
83 sugar surfactants. Indeed, they obtained AMAZEafter removing 5% high residual compounds reaching
0.19.Baghban et al.[13]also investigated the same data set as Gaudin et al. and Wang et al. with least squares
support vector machine (LLSVM) and reported the RMSE value of 0.02.

This review aims to createa new QSPR model that could be used to predict CMC from the molecular
structure of a range of surfactants,including classical and extended sugar-based surfactants.Artificial neural
networks (ANN), Multiple linear regression, Partial least square, and Adaptive neuro-fuzzy inference
system were the statistical methods employed to develop the QSPR models, which were built following

the Organization for Economic Cooperation and Development guidelines.
2. Methodology

2.1 Data collection and dataset division

It is generally recognized that the creation of high-quality QSPR models requires high-quality
experimental data [26]. The dataset for the current investigation included 125 sugar-based surfactants (109
conventional sugar surfactants and 16 extended sugar surfactants). The CMC of these surfactants was
determined at temperatures close to room temperature (20-25°C). the CMC values were adjusted to a
negative logarithmic scale [pCMC = -log;(CMC (mol/L)]to guaranteethelinear distribution [27]. The
whole dataset has been split into two classes. The first class, consisting of 119 sugar surfactants (Table 1)
collected from previously mentioned literature [1,4,28-30], was used to create the QSPR model (75% of
the data comprise the training set, whereas 25% include the validation and test set). The second class, which
included six sugar-based surfactants that were not employed in creating the QSPR model, was used to

predict pCMC using the most efficient model.
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2.2 Molecular descriptor calculation

Molecular descriptors are numerical that represent the specificities of a compound's structure. For each

surfactant, 1544 molecular descriptors were determined using PaDEL-descriptor software, which is

available online. The molecular structure of compounds used in model development were drawn manually

using Chem sketch software and the structures were saved as SMILES (Simplified Molecular Input Line—

Entry System) notation, which is the approved input format for PaDEL-descriptor software[31].

2.3 Molecular descriptor selection a

An important step in the QSPR model is decreasing the number of descriptors. This decrease serves two

objectives: it prevents overfitting and it reduces the possibility of finding a model by chance[27]. The

stepwise-multiple linear regression (S-MLR) tool (http://teqip.jdvu.ac.in/QSAR_Tools/) was used to find

the least number of meaningful descriptors that could predict the output property. The dataset of descriptors

acquired following S-MLR selection using the F-value consisted of 6 descriptors.

Table 1. List of 119 sugar-based surfactants and their experimental pCMC values along with

predicted pCMC values.
N° Sugar surfactants structures Substituent (R) pCMC (mol/L)
Observed” | Predicted”
1 HO/\ﬁO/R Octyl 2.237 2.394
OH
2 HO/\/O\R Octyl 2.310 2.319
3 OH Octyl 1.669 2.125
4 [HON_O 0 q 1-butylhexyl 1.824 1.776
5 OH 1-propylheptyl 1.921 1.806
6 1-ethyloctyl 2.071 1.877
7 1-mehylnonyl 2.347 2.276
8 3,7-dimithyloctyl 2.398 1.995
9 Decyl 2.699 2.928
10 Nonyl 2.161 2.535
11 Heptyl 1.141 1.601
12 Hexyl 0.645 1.055
13 Dodecyl 3.721 4.019
14 OH Dodecyl 4.377 4.019
15 Hﬁm R Ocyyl 5 2125
OHO
16 OH Ocyl 2.854 2.542
17 | HON_ 2 o Octanoyl 3.215 2.402
R OH :
18 Octyl 1.638 1.713
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19 OH Nonyl 2.155 2.258
Hﬁ)m O~ R
NH,
20 OH Hexyl 1.086 0.896
21 Hﬁoﬁoz S-pq Hepyl 1.565 1.135
2 OH Ocgl 1.983 1.975
23 Nonyl 2.553 2.643
24 Decyl 3.046 3.253
25 OH 3,7-dimethyloctyl 2.276 2.070
26 HSOS O: OH Decyl 2.699 2.554
27 OHgOtO o R Dodecyl 3.769 3.770
28 OH Octyl 1.635 1.557
29 Nonyl 2.187 2.044
30 Tetradecyl 4.777 5.162
31 Hexadecyl 5.839 6.218
32 3,7,11trimethyldodecyl 4.526 4.467
33 OH Dodecyl 3.921 3.770
ﬁo
OH ﬂo R
OHO
Table 1. (Continued)
N° Sugar surfactants structures Substituent (R) PCMC (mol/L)
Observed” | Predicted”
34 Hexadecyl 6.222 6.219
35 Dodecanoyl 3.481 3.327
36 3,7-dimethyloctyl 2.301 2.327
37 Oleyl 4.377 4.503
38 Octyl 2.086 2.307
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39 OH Degyl 3.222 3.294
OH a o S
OH
40 oH Octyl 2222 2.125
41 How\ Degyl 3.602 2928
HO R
42 o Dodecyl 4.301 4.019
43 Hepoyl 1.514 1.601
44 Nonyl 2.398 2.535
45 | 4o OH Octyl 1.796 2.125
46 HO O 0-g Decyl 3.155 2.928
47 OH Dodecyl 3.699 4.019
48 Heptyl 1.757 1.601
49 | o OH Hepoyl 1.488 1.601
50 | o\l Octyl 1.724 2.155
51 OHO Nonyl 2.284 2.535
52 OH OH Butyl 1.237 1.175
53 HOJ\HVO\R Pentyl 1.420 1.310
54 OH Hexyl 1.023 1.639
55 Heptyl 2.036 2.146
56 Octyl 2.174 2.532
57 Nonyl 2.678 2.773
58 Pentanoyl 0.921 1.141
59 Hexanoyl 1.237 1.272
60 Heptanoyl 2 1.415
61 Nonanoyl 2.357 2.372
62 decanoyl 2.745 2.957
Table 1. (Continued)
N° Sugar surfactants structures Substituent (R) pCMC (mol/L)
Observed” | Predicted”
63 OH OH Butyl 0.745 1.249
64 | HO S\R Pentyl 1.337 1.442
OH
65 OH OH Hexyl 1.745 1.908
66 | HO ~_S—q Octyl 2.745 2.980
OH
67 OH OH Hexyl 1.921 1.908
68 HOMS\R Octyl 2.921 2.980
69 OH Decyl 3.398 3.732
70 Octyl 3.319 3.569
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71 OH Decyl 4.481 4.505
R
S - 1OH
O
W\
0]
72 OH Dodecanoyl 3.444 3.104
R
OH OH
73 OH Hexyl 2.301 2.629
74 | HO,, wOH Octyl 3.276 3.167
75 R Decyl 4.638 4.387
o~ o s~
76 OH OH ‘C‘) Decyl 2.886 3.039
77 | HO : N Dodecyl 3.854 3.913
78 OH OH | Tetradecyl 4.619 5.358
79 Oleyl 4.495 5.419
80 OH OH (‘)‘ Decyl 2.638 2.836
81 O|_I-||O S N~ R Tetradecyl 4.444 4.452
82 o. 6 oHn | Hexadecyl 5.032 5.133
83 Octadecyl 5.481 5.571
84 | Ho OH Oleyl 4.268 4.241
OH
85 OH OH Octanoyl 1.161 1.359
86 HO/M/N\R Nonanoyl 1.678 1.801
87 OH OH Decanoyl 2.174 2.336
88 OH Hexyl 1.081 1179
89 HOUOH Dodecyl 3.509 3.812
" 07 Yo oH
OH NH
o
OH OH O
Table 1. (Continued)
N° S £ Substi ®) pCMC (mol/L)
tants st t Juls t
ugar surfactants structures ubstituen Obeerved T Predicied™
90 OH OH O R Decyl 2.886 2.869
HO M
OH T Y NH
o O] OH
HO OH
OH
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91 OH OH Decanoyl 2.481 2.622
92 O|I-|-|O 7 : 7 N/R Dodecanoyl 3.347 3.219
93 o é é H ‘ Tetradecanoyl 4,167 3.969
94 Octanoyl 1.347 1.250
95 Octanoyl 1.155 1.250
96 Dodecanoyl 3.337 3.389
97 Dodecanoyl 3.022 2.997
98 Dodecanoyl 2.638 2.647
99 Hexyl 1.991 1.908
100 Ocgl 3.420 2.980
OH
Table 1. (Continued)
No S f S b . (R) PCMC (mOl/L)
tants struct tituent
ugar surfactants structures ubstituen Observed’ Predicied”
101 hepoyl 1.710 1.851
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102 T NH Octyl 2.481 2.685
HO O
HO OH
OH
NH . .
103 |0 NH Ocgl 2.398 2.685
Ny
HO OH
OH
104 CHg OH Dodecyl 4.398 4.230
0]
R{ 0
60 OH
HO
OH
OH Dodecyl
05 R{ J}O/\/Ov\ o m=6 3.959 03
106 m N _>"OH m=10 4.398 4.610
HO
107 OH m=14 4.699 4.862
Dodecyl
0 0
108 | r{ o g m=6 4301 4303
109 m m=10 4.523 4.733
HO O
OH OH
OH
R{O/\%O\/\O/\/O Dodecyl
110 m m=6 4.699 4.573
OH
111 HO m=10 4.699 4917
OH
OH
112 R/O Octyl 2.469 2.583
113 HO o Decyl 3.432 3.244
OH OH
OH
Table 1. (Continued)
N° S £ Substi ®) pCMC (mol/L)
ugar surfactants structures ubstituent Obeerved T Predicied™
114 Octyl 2.174 2532
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115 0 Decyl 3.092 3.031
R
OH
HO

OH

OH
116 OH Octyl 2.921 2.901
117 o Decyl 3.108 3.036
18 | g 2N o Dodecyl 3.638 3.424
119 HO 0 Tetradecyl 3.745 3.866

OH

*Experimental pCMC values are collected from the following literature: [1, 4, 28-30]" pCMC values

predicted by ANN

2.4 QSPR model’s development and validation

Multiple linear regression (MLR),Partial least square (PLS), Artificial neural networks (ANN), and
Adaptive neuro-fuzzy inference system (ANFIS)were used to create the models. For the ANFIS and ANN
approach, we have employed MATLAB" R 2018a. while MLR PlusValidation 1.3 tools and Partial Least
Squares Y1.0 were used for MLR and PLS methods,respectively(http://teqip.jdvu.ac.in/QSAR_Tools/).

Validation is an important part of QSPR modeling, and the predictive models generated with varied

parameters were subjected to both internal and external validation criteria. The statistical parameters [32—

36] described in Equations (1) — (17) were employed, and the terms in these equations are specified

appropriately:
NINT ., 0b pred
QZ -1 Yicq (yio(tfﬂaining)_yi(training))2
Loo — 1™ b 50D
o0 2:ln:1(yio(tiaining)_ y(otrfzining))z
Ngxro. obs _ . pred 2
2 _q1_ Zi=1 (yi (test) Yi (test))
QF1 - n ( obs __ xo0bs )2
i=1U; (test) y(training)
Ngxro.0bs _ . pred ~2
2 _q_ Zi=1 (yi (test) Vi (test))
QFZ - n ( obs _ 5o0bs )2
i=1; (test) y(test)
n obs predy2
Rz q_2=00 — ¥ )
- n obs __ —,0bs\2
i=1(Vi o)
n obs pred
k= =i -y )
- n pred~2
i:l(yi )
n obs . pred
K = =i -y )
- n obs\2
n obs pred-2
2 g 2imOi — Ry )
0o — n obs —=0bs\2
=177 = ¥O7%)
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e ( pred _ ObS)Z

2 _
T(; =1- ( pred _pred) (8)
=1

2 =121 —r?2 —nry?) ©)
e =121 —r2 —1ry?) (10)

(AP
—,#l —_xm m/ (11)
2
Ary = |rm rr;lz (12)
obs
—obs __ l 1yl
y n (13)
n ypred
spred — Zi=17Q 14
y 2 (14)
23 sty — Toren) OF (easty = Vroet:
ccc = i (test) (test) i (test) (test) (15)
red red —pred
Z(yioé)tsest) y(otl:asét))z + Z(yp(teest) y(l;eit))z + n(y(otlésst) Y(’Zeit))z
b pred~2
RMSE = 2O — oy ) (16)
n
b pred
MAE = aly?™ =y (17)
n

Where, Q?: cross-validation correlation coefficient, R?: coefficient of determination, £&#": slopes of the
corresponding regression lines,r¢ : squared correlation coefficient between the observed and predicted

value of compounds without intercept, 7§%: bears the same meaning as TOZ, but uses the reversed axes,

7,2 &A% average and delta of 12, y ob

S is the experimental value of Y, y!"* % is the predicted Y-value of
training set, test set or validation set, #: number of compounds in the data set, y°PS&yP"¢%: average of
YobSand Ypredrespectively, CCC': concordance correlation coefficient, RMSE : Root Mean Squared

Error, MAE : mean absolute error.
The different thresholds for these indicators are listed in the Table 2[37].

Table 2.Acceptance criterion (A.C) of a model [37].

Parameter Q2 RZ,, k k' ¥ ArZ CCcC

A.C value >0.7 >0.7 0.85<k & k'<1.15 >0.65 <0.2 >0.85

Roy and his collaborators[38], proposed two metrics for measuring the external predictability of QSPR
models using, mean absolute error (MAE and MAE +30) after omitting 5% high residual compounds. An
ExternalValidationPlus (http://teqip.jdvu.ac.in/QSAR_Tools/) is an online tool that may be used to

compute these MAE-based external validation requirements[39].
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2.5 QSPR model’s applicability domain (AD)

Application domain is described as the area in which a compound can be predicted with confidence[40],
so it’s a crucial factor to consider [41]. The leverage strategy (Williams plot) and the standardization
approach were employed in this research.

2.5.1 Applicability domain using leverage approach

The Williams plot is a graphical representation of standardized residuals displayed against the leverage
value of each compound[42].The applicability domain was specified as a square rectangle spanning +3
standard deviations and a warning leverage value (h*). The leverage values (h;; ) correspond to the diagonal

elements of the hat matrix (H) as defined[40] by:
H=XX'X)"1xt (18)

Where X is the matrix built on the values of the model descriptor and compounds of the learning set and

the warning leverage (h*) was determined[40,43] as:

3+ 1) (19)
on
Where p is the number of model descriptors and 7 is the total number of samples in the training set.

h*

2.5.2  Standardization approach

This approach is an easy way to identify outliers (in the case of the training set) and the compounds that
reside outside the AD (in the case of the test set). An open access standalone application has been created
for  estimating the AD for QSPR  models. The software is  available at
(http://teqip.jdvu.ac.in/QSAR_Tools/). The basic theory, algorithm, and methodology, as well as the
benefits of the suggested approach, are all available in the literature[44].

3. Results and discussion

3.1 Molecular descriptor selection

The six (6) descriptors obtained after selection by S-MLR techniques were: SssCH2, ATSCS5e,
AATSC4m, BIC3, MATSIc, and SpMinl_Bhe. To conduct the research, a correlation matrix comprising
six descriptors was created. The correlation coefficient for each pair of descriptors is less than 0.63,

indicating that the descriptors chosen were independent.

3.2 MLR model

The MLR model, generated by using 6 variables (descriptors) is illustrated by a linear equation (Eq.20)

and the statistical parameters represented in Table 3).

pCMC = 12,09731 (+ 5,88554) + 0,16059 (+ 0,0293) SssCH2 + 0,17617 (x 0,06241) ATSC5e + 0,25775
( 0,06659) AATSCAm - 7,58599 (+ 2,16343) BIC3 - 6,20729 (& 2,10092) MATSIc - 4,55738
(£2,92592) SpMin1_Bhe (20)

The standard error of regression coefficients is denoted in parenthesis, and the statistical parameter values

represent the MLR model’s robustness and friability.In addition to indicating whether the model is not
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overfitted, Tropsha and Golbraikh[45,46] propose thatR2- Q7 , should be less than 0.3. As part of this
study, the R?-QZ, = 0, demonstrating that the MLR model is not overfitting. Moreover, a PRESS/SSY
ratio of less than 0.4 suggests a reasonable QSPR model [47]. The ratio is 0.13 (PRESS = 22.75, SSY =
170.3), indicating that the established model prediction is better than chance. The influence of a descriptor
in a model is characterized by its mathematical equation for the sign-in model.

The regression coefficients of Eq (20) show that the BIC3, MATS]1c¢, and SpMin1_Bhe descriptors have
negative signs,implying that they have a negative influence on the CMC of sugar-based surfactants. On the
contrary, the regression coefficients of the descriptors SssCH2, ATSC5e, and AATSC4m have positive

contributions and the greatest values contributing to the improvement of the CMC of sugar surfactants.

Table 3.Validation parameters for MLR model’s train, validation, test, and global set.

Statistical values Train Validation Test Global
n 83 18 18 119
R? 0,834 0,902 0,945 0,868
Q%oo 0’834 - - -
Q%4 - 0,887 0,934 -
Q%, - 0,834 0,930 -
K 1 0,903 1,042 0,997
k' 0,979 1,089 0,949 0,983
rg 0,834 0,902 0940 0,866
ry 0,806 0,888 0928 0,839
r} 0,834 0,882 0,879 0,8389
r,2 0,693 0,795 0,821 0,719
r3 0,764 0,838 0,850 0,779
Ar2 0,141 0,087 0,057 0,119
CCC - 0,922 0,960 0,926
MAE 0,288 0,304 0,269 0,287
RMSE 0,453 0,409 0,386 0,437
MAE (95%data) - - 0.217 -
MAE +30 (95%data) - - 0.786 -

3.3 PLS model

The PLS regression model generated with six descriptors displayed a significant correlation between the
predicted and experimental values of pPCMC (R? = 0.783, RMSE = 0.519). Table 4 shows the statistical

parameters for the prediction set.

Table 4.Validation parameters for the PLS model’s train, validation, test, and global set.

Statistical values Train Validation Test Global
n 83 18 18 119
R? 0,783 0,832 0973 0,832
Q%oo 0,782 - - -
Q% - 0,836 0,956 -
QZ, - 0,758 0,953 --
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Statistical values Train Validation Test Global
K 0,999 0,900 1,054 0,998
K 0,973 1,078 0944 0977
r§ 0,783 0,828 0,968 0,832
rg 0,737 0,821 0,963 0,797
r2 0,773 0,783 0,909 0,820
1,2 0,614 0,746 0,879 0,676
2 0,694 0,764 0,894 0,749
ArZ 0,159 0,037 0,030 0,144
CCC - 0,889 0,974 0,907
MAE 0,362 0,379 0237 0,345
RMSE 0,519 0,494 0317 0,490
MAE (95%data) - - 0.203 -

MAE +30 (95%data) - - 0.704 -

3.4 ANN model

In this investigation, the training function trainlm “Levenberg-Marquardt” was utilized for training the
network.For the hidden layer and output layer, the tansig “hyperbolic tangent” and purelin “linear transfer”
functions were used, respectively.Several computations were performed using different numbers of hidden
nodes (1-9) to optimize the number of hidden neurons. The observed pCMC was represented by one output
neuron. The 119 sugar-based surfactants were split into three groups: training set (70%), validation set (15
%) and test set (15 %). The model with a minimum RMSE was chosen[48]. The ANN model with {6-6-
1} architecture was constructed as the final model. Table 1 provides the prediction pCMC from the ANN
model for 119 sugar surfactants. The scatter plot of the observed vs predicted results for the training,
validation, and test set is shown in Figl. A close correlation was found between the predicted and observed

values of pCMC, except for some outlier points, considered as accepted out of range.

training

[=]
6] © validation a4
A test o
linear fit F\:A
g5 o’
5 >
3 K
g 49 f%dﬂ
o a
2 5 iy
3 ot
2 mﬁqu .
i e
g r’g.—" 5
= ;Foa.@“
0 T T T T T T

Experimental pCMC (mol/L)
Figure 1. Scatter plot of the predicted values of pCMC versus the experimental values by ANN

model for the training, validation, and test set.

The statistical parameters for validation results, given in Table 5, meet the required standards, indicating

that the ANN model is robust and provides excellent predictive performance.

Tob Regul Sci. ™ 2024 ;10(1) : 988-1009 1000



Boukelkal Nada et. al
Computational QSPR Model to Predict the Critical Micelle Concentration (CMC) of Classic
and Extended Sugar-Based Surfactants.

Table 5.Validation parameters for ANN model’s train, validation, test, and global set.

Statistical value Train Validation Test Global

n 83 18 18 119
R? 0,861 0,972 0,985 0,908
Q%oo 0,856 - - -
Q3 - 0,978 0982  --
Q3, - 0,967 0981  --
K 0,991 0,974 0,975 0,986
K’ 0,990 1,022 1,023 0,999
2 0,857 0,971 0,985 0,906
rg? 0,856 0969 0,985 0,906
r2 0,804 0,939 0,976 0,873
r;? 0,802 0,913 0,982 0,864
r2 0,803 0,926 0,979 0,868
Ar2 0,001 0,026 0,006 0,009
CCC - 0,983 0,991 0,953
MAE 0,246 0,144 0,165 0,218
RMSE 0,422 0,182 0,199 0,368
MAE (95%data) - - 0.152 -
MAE +30 (95%data) - - 0.466 -

To see the relationship between the predicted property and the descriptor in the ANN model, a
connection weights approach was used in this method, proposed by Olden[49]. From Fig 2 the order of
relative contribution level of the descriptors was:ATSC5e > BIC3 > SpMinl_Bhe> MATS1¢ > SssCH2 >
AATSC4m. In this situation, the variables with the biggest relative contribution were ATSC5e, BIC3, and
SpMinl_Bhe (40.97%, 36.44%, and 27.34% respectively).
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e
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a
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&
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8 201 o
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Figure 2. Plot of the fraction contribution of the descriptors to the pCMC of sugar-based

surfactants.

ATSC5e is centred broto-moreau autocorrelation of lag Sweighted by Sanderson electronegativity. BIC3
is a bond information content index defined as neighborhood symmetry of 3-order. SpMin1_Bhe is burden
eigenvalues n.1 of burden matrix weighted by Sanderson electronegativicy. MATS1c is a 2D

autocorrelation, which is known as the moran coefficient of lag 1 weighted by gasteiger charge. SssCH2
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describes the electropological state. SssCH2 represents the sum of- CH, group connected with two double
single bonds. On the other hand, AATSC4m is defined as averaged and centered moreau-broto
autocorrelation of lag 4 weighted by mass.

In summary, it can be concluded that electronic properties (electronegativity and charges), electro-
topology, and symmetry of a molecule are of major importance in the micellization of sugar-based

surfactants.

3.5 ANFIS model
Both artificial neural networks and neural-fuzzy systems are used in ANFIS architecture[50]. The
R?(0.916) value and 732 (0.845)for the test set obtained within an acceptable range. Table 6 reports a value

for various parameters used in the ANFIS model.

Table 6. Validation parameters for ANFIS model’s train, test, and global set.

Statistical value Train Test  Global

n 101 18 119
R? 0,935 0916 0,932
QEOO 0’935 - -
Q% - 0917 -
Q3, - 0,894 --
K 1,000 0,972 0,994
K 0,990 1,018 0,996
ré 0,935 0,902 0,931
re 0,931 0915 0,930
r2 0,935 0,806 0,911
2 0,877 0,884 0,893
2 0.906 0,845 0,902
Ard 0,058 0,079 0,019
CCC ~ 0,952 0,965
Table 6. (Continued)
Statistical value Train Test Global
MAE 0,089 0,2701 0,116
RMSE 0,299 0,384 0,314
MAE (95%data) - 0.227 -

MAE +30 (95%data) -- 0.882 -

1

3.6 Comparison of four statistical models

The statistical quality of a model for an external (test) set is the most important factor for evaluating its
predictive power [51].We used the same kind and number of descriptors for each model. As evidenced by
the validation metrics previously reported in (Tables 3, 4, 5, and 6), all models (MLR, PLS, ANN, ANFIS)
are of acceptable quality. ANN model outperforms the other three regression models in terms of the external
validation metrics namely R?, Q%;, Q%, and CCC. A further analysis using MAE (MAE and MAE +30) after

removing 5% of the data compounds with large prediction residuals gave the quality of the ANN model as
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good, which is also consistent with the judgment offered by classical external validation metrics. we used
cross-validation with the LOO method to evaluate the robustness of the models. In the ANN model, Q2
was 0.86 and in MLR, PLS and ANFIS were 0.83, 0.78, and 0.93 respectively.

3.7 Applicability domain

The Williams plot and standardization technique were used to examine the applicability domain of the
ANN model. In Figure 3 we can see that no compound in the entire dataset had leverage greater than the
warning h* value of 0.25. the standardization approach recognizes the training compound 15 within the
AD but the leverage approach identifies it outside the two horizontal lines. However, the training
compounds 109,110, and 111 are identified as outliers, validation compounds 58 and 107 and test
compound 106 are identified outside by standardization technique but recognized inside the AD by leverage
approach. Importantly, more than 99.15%, and 95% by Williams plot and standardization approach
respectively of the domain covered, indicating that the ANN model compiles with the third principle of
the OECD. As a result, the ANN model provided a good prediction for these compounds. It can be used
to estimate the CMC of sugar-based surfactants, especially for untested substances and novel compounds.

9
8 ] o O training
7 O validation
6] A test

5]
4]
2]
2]
13
0
1]
2]
3]
4] h*=0,25
T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

standardised residuals

Levrage

Figure 3. Projection of the training, validation, and test set of sugar-based surfactants in the

Williams plot.
3.8 Comparison with previously reported models

To predict the CMC of sugar-based surfactants, we compared the statistical results of our ANN model
with a limited number of QSPR models available in the literature (Table 7). The comparison with the work
of Gaudin et al.[1]showsthat our model gives higher statistical quality and predictive performance in terms
of external validation. Additionally, a limited number of statistical parameters are used from these QSPR
modelsin the internal validation, unlike our model which has several statistical indices. In addition, we used
our model (ANN-simulate network) to forecast the CMC of 6 sugar-based surfactants that had not been
used for the construction of the QSPR models. The promising results are summarized in Table 8. These
results demonstrate a high degree of consistency between the computed estimates and observed data, and
thedeveloped ANN model shows great potential for determining the CMC of new surfactants while

reducing time and money.
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Table7. Results of our best model’s (ANN) internal and external validation compared with those from

previous research.

Training Validation Test
on | TR TOR R (AR R QA | [ GR| R | Q| & MAE | MAE
ELS Niotd (95%d | +30
ata) (95%
data)
Presen | 11 0.8 {08 |08 0009|0909 00|09 |09 |00 |0.152 | 0.466
twork | 9 61 56 |03 |01 |72 |78 |26 |26 |85 |82 |06
(ANN
)
Gaudi |83 |09 [09 |- - -- - - - 09 (09 |01 |- -
n et al. 3 1 1 0
Wang | 83 09 |09 |- - - - - - 09 | -- - 0.197 | 0.674
et al. 59 | 47 46
Baghb |83 |09 |~ |—- |- |- |— |- |- J09 |- |- |- =
an et 99 97
al.
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Table 8. Observed value of pPCMC and those predicted by ANN-simulate for 6 sugar surfactants.

Sugar surfactants Observed Predicted
pCMC pCMC
(mol/L) (mol/L)

OH OH 1.745 1.749
HOM/OM
|
OH O
OH 2.174 2.879
NN N
S ~OH
(@]
N\
O
OH OH o 3.602 3.591
HO : I

OH 4.699 4.746

OH
OH 2.244 2.077
HO OH
| 0] O OH
OH NH ~ ~ -~ —
HO = I
OH OH O
OH 2.886 2.868
HOL_ . _LOH
| O O OH
OH NH ~ ~_ -~ —
HO = ]
OH OH O

4. Conclusion

In this work, we propose four regression models to estimate the CMC value of 119 sugar surfactants by
utilizing six relevant molecular descriptors. The metrics of the four developed models fell within the
acceptable range. The ANN model was trained using the training function trainlm “Levenberg-Marquard”

gave a better performance in CMC prediction with QZ,; and 75 values (0.98 and0.97) were higher, and
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ArZ value (0.006) was acceptable for a testing dataset in comparison to models previously reported. Based
on MAE metrics, the ANN model makes accurate predictions, as indicated by the removalof 5% of the test
set objects with high residual values. In addition, estimating the CMC of 6 other sugar surfactants based on
simulate of the network gave very good results (R = 0.96). The In-silico modelsused in this
studydemonstratedthe significance ofelectronic properties (electronegativity and charges), electro-topology,
and symmetry of a molecule in contributing to the micellization process. In conclusion, all validations
showed that the built QSPR model was reliable, acceptable, consistent with the OECD principle, and able

to accurately predict the CMC for the surfactant that not contained in the data set.
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