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Abstract

QSAR modelling is a widely used method that aims at learning relationships between input structures and
output bioactivity data in order to make accurate predictions of bioactivities based on data structure.
Prediction of the anti-HIV activity has been one of the most important tasks in chemical sciences where
dominant approaches based on machine learning methods have been proposed. In this paper, we present a
machine learning approach based on Gradient Boosting Regressor (GBR) to improve the performance of the
HEPT anti-HIV activity prediction. The study was carried out with the estimation of the anti-HIV activity of a
large set of 107 HEPT compounds using five quantum molecular descriptors. We evaluate our model on test
and over all datasets, and in both cases we achieve state-of-the-art results.
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1.  Introduction

Acquired Immunodeficiency Syndrome Disease (AIDS) epidemic is a threat to the health of
the population worldwide caused by the Human Immunodeficiency Virus (HIV) [1]. 38,4
million people globally were living with HIV in 2021 [2]. To overcome the problem, there is an
enormous interest by the medical and scientific community where current combination therapy
named highly active antiretroviral therapy has been optimized. 28,7 million people were accessing
antiretroviral therapy in 2021 [2]. This treatment, which inhibit multiple viral replication cycle,
reduced remarkably AIDS-related mortality. Non-nucleoside reverse transcriptase inhibition is an
essential component of this treatment. To date more than 50 structurally diverse classes of
compounds have been reported as non-nucleoside reverse transcriptase inhibitors [3-10].

The first discovered non-nucleoside reverse transcriptase inhibitor is 1-[(2-hydroxyethoxy)
methyl]-6 (phenylthio) thymine (HEPT) which exhibited moderate bioactivity and selectivity
[11]. Since numerous HEPT derivatives have been designed and synthetized to optimize their
anti-VIH-1 bioactivity [12-29]. The HEPT derivatives common structure is of thymine molecule
structure where different substituents are changed. Due to HIV-1 drug-resistant mutant

emergence, the development of novel non-nucleoside reverse transcriptase inhibitors have to be
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continued [30]. This process can be aided and accelerated by using efficient Quantitative
Structure Activity Relationship (QSAR) models.

QSAR modeling surrounds an important class of computational chemistry problems. Using
such numerical means can facilitate and benefit several applications such as assessing the efficiency
and general toxicity of drugs. QSAR is an important task that can be cast as a regression problem
and can be formulated as follow: given a data set of structure-derived features of compounds, the
QSAR model aims to relate the set of descriptors of each compound to its biological activity [31,
32].

QSAR was first proposed by Cros in 1863 for water solubility based on the toxicity of primary
aliphatic alcohols [33] and then applied to compounds possessing anti-HIV activity since 1991
[34]. The area of QSAR modeling for the anti-HIV inhibition has been enriched over the last few
decades by the contribution from several researchers. Several sophisticated machine learning
algorithms have been developed.

Statistical machine learning techniques have been applied to several brunches. Much progress

has been made to advance the state-of-the-art on QSAR modeling for the anti-HIV task. In
literature, Contributions mainly come from two research directions. One is the choice of
descriptors which contain information about each compound that is very important to the task
[35]. The second line of research is the selection of the appropriate statistical method [31, 36-38].
Several QSAR studies have carried out on HIV-1 non-nucleoside reverse transcriptase inhibition
of HEPT derivatives [39-50]. This section provides a brief mini review of some of them.
The first work was proposed by Luco [39] which applied two machine learning algorithms, partial
least squares (PLS) and multiple linear regression (MLR) with a set of 10 hydrophobic and
geometric descriptors. Douali et al, [40] were the first to explore artificial Neural Nets (ANN) for
the estimation of the anti-HIV activity with a set of eight structural and physicochemical
descriptors on 80 HEPT derivatives.

Additionally, in the same way as Douali et al., [40]; Shaik et al., [41] used Neural networks
with a different set of descriptors. Shaik et al., [41] used 4 topological descriptors and a dataset of
107 compounds. Moreover, Shaik et al., [41] also used MLR and another most widely used state-
of-the-art machine learning technique; Support Vector Machine (SVM). The ANN model shows
the highest results on both train, test and overall data. In recent years, an MLR based model have
been proposed by Rahmouni et al., [42]. The proposed model was performed using 60 HEPT
derivatives with the help of 9 quantum descriptors.

The achieved experimental results confirm the effectiveness of all the proposed machine
learning techniques for the anti-HIV bioactivity of HEPT derivatives prediction. The main

characteristics of the proposed QSAR models in the literature are summarized in table 1.

Table 1: Brief description of the state of the art proposed models.
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Reference N molecules N Descriptors Type of Descriptors Model R2
MLR 0.799
Ref [41] 84 4 Topological descriptors ANN 0.825
SVM 0.817
Ref [40] 80 8 Structural and ANN 0.958
physicochemical PLS 0.944

descriptors

Ref [39] 107 10 Hydrophobic and MLR 0.951
79 geometric descriptors PLS 0.943
Ref [42] 60 9 Fukui Indices MLR 0.815

In this paper, we introduce a GBR-based approach for modeling the anti-HIV activity. The
main contributions of the present work are as follows: (1) We present a QSAR approach to
predict anti-HIV activity with a set of five quantum descriptors. (2) We report results on a large
dataset containing 107 compounds and show that the approach outperforms state-of-the-art
methods. (3) We report results that only simple statistical techniques are weak in estimating the
activity while boosting the regression dramatically improves the prediction performance.

The paper is organized as follows. In section 2 we introduce the gradient boosting method. Next,
Section 3 gives details about our GBR QSAR model and experiments setup. In addition, Section
4 provides experimental results with a comparison against previous works for both statistical

method and the set of descriptors. Finally, in Section 5 we conclude the paper.

2. Gradient Boosting
We present an overview of the GBR approach in this section.

Gradient Boosting (GB) [51-53] is a machine learning technique primarily used for regression
tasks. The method produces more accurate prediction models based on the boosting principle
where several weak learners are added to form a strong learner.

The main idea behind the method as the name suggests is to generate sequentially models
during the learning process where each tries to correct its predecessor. First, base simple trees with
single root nodes are constructed. Then, subsequent trees are built from errors of the previous
tree. After each iteration, each data sample is given a weight based on its prediction. The more
often a data sample residual is large (prediction error), the more important it becomes. The trees

are scaled by using the learning rate. The goal is to minimize an objective function:

06 =Y 1G.y)+ ) )
t t
Where:
*1(3,, ¥;)is the loss function
* Q(f;) is the regularization function
The subsequent trees are combined with the preceding trees to predict the response. The process is
repeated until the model prediction stops improving or the maximum number of trees is reached.

The overall model becomes a stronger predictor.
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3. Materials and Methods

In this section, we present our approach for developing an Anti-HIV inhibition QSAR model
using the Gradient Boosting Regression (GBR) method. We provide detailed information about
the development of our GBR model to predict the anti-HIV bioactivity of HEPT derivatives.
3.1. Dataset
3.1.1. Target function

The anti-HIV activity (log (1/EC50)) for 107 HEPT derivatives were collected from the
previously published literature [39-42, 54]. The general base structure of these compounds is

shown by figure 1. This figure shows also the atomic numbering used in this work.

Figure 1. HEPT derivatives general structure and atomic numbering

The structural details as well as anti-HIV activity (log (1/EC50)) are reported in Table 2.
HEPT derivatives have been obtained by varying thymine base structure substituents in order to
improve their bioactivity [12-19]. Nature, number and position of substituent influence on
HEPT derivatives anti-HIV have been investigated and quantified. From Table 2, it can be noted
the cooperative effects of different aspects of substituents. It can also be noted that a little
substituent structure change can induce large bioactivity modification. No linear correlation

between substituent structure and bioactivity was identified.

Table 2: Chemical Structures and Observed Anti-HIV-Activities of HEPT Derivatives.

N° R1 R2 R3 X Anti-HIV
Compounds ACTIVITY
1 2-Me Me CH20CH2CH20H O 4.15
2 2-NO2 Me CH20CH2CH20H O 3.85
3 2-OMe Me CH20CH2CH20H O 4.72
4 3-Me Me CH20CH2CH20H O 5.59
5 3-Et Me CH20CH2CH20H O 5.57
6 3-t-Bu Me CH20CH2CH20H O 4.92
7 3-CF3 Me CH20CH2CH20H @) 4.35
8 3-F Me CH20CH2CH20H O 5.48
9 3-Cl Me CH20CH2CH20H 0] 4.89
10 3-Br Me CH20CH2CH20H O 5.24
11 3-1 Me CH20CH2CH20H O 5.00
12 3-NO2 Me CH20OCH2CH20H O 4.47
13 3-OH Me CH20OCH2CH20H O 4.09
14 3-OMe Me CH20CH2CH20H 0O 4.66
15 3,5-Me2 Me CH20OCH2CH20H O 6.59
16 3,5-Cl2 Me CH20OCH2CH20H 0O 5.89
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17 3,5-Me2 Me CH20CH2CH20H S 6.66
18 3-COOMe Me CH20CH2CH20H O 5.10
19 3-COMe Me CH20CH2CH20H O 5.14
20 3-CN Me CH20CH2CH20H O 5.00
21 H CH2CH=CH2 CH20CH2CH20H O 5.60
22 H Et CH20CH2CH20H S 6.96
23 H Pr CH20CH2CH20H S 5.00
24 H i-Pr CH20CH2CH20H S 7.23
25 3,5-Me2 Et CH20CH2CH20H S 8.11
26 3,5-Me2 i-Pr CH20CH2CH20H S 8.30
27 3,5-Cl2 Et CH20CH2CH20H S 7.37
28 H Et CH20CH2CH20H O 6.92
29 H Pr CH20CH2CH20H O 5.47
30 H i-Pr CH20CH2CH20H O 7.20
31 3,5-Me2 Et CH20CH2CH20H O 7.89
32 3,5-Me2 i-Pr CH20CH2CH20H O 8.57
33 3,5-Cl2 Et CH20CH2CH20H O 7.85
34 4-Me Me CH20CH2CH20H O 3.66
35 H Me CH20CH2CH20H O 5.15
36 H Me CH20CH2CH20H S 6.01
37 H I CH20CH2CH20H O 5.44
38 H CH=CH2 CH20CH2CH20H O 5.69
39 H CH=CHPh CH20CH2CH20H O 5.22
40 H CH2Ph CH20CH2CH20H O 4.37
41 H CH=CPh2 CH20CH2CH20H O 6.07
42 H Me CH20CH2CH20OMe O 5.06
43 H Me CH20CH2CH20Ac O 5.17
44 H Me CH20OCH2CH20COPh O 5.12
45 H Me CH20CH2Me O 6.48
46 H Me CH20OCH2CH2CI O 5.82
Continued on next page
Table 2 — Continued from previous page
N° R1 R2 R3 X | And-HIV
Compounds ACTIVITY

47 H Me CH20OCH2CH2N3 @) 5.24
48 H Me CH20CH2CH2F @) 5.96
49 H Me CH20OCH2CH2Me O 5.48
50 H Me CH20CH2Ph @) 7.06
51 H Et CH20CH2Me O 7.72
52 H Et CH20CH2Me S 7.58
53 3,5-Me2 Et CH20CH2Me 0] 8.24
54 3,5-Me2 Et CH20CH2Me S 8.30
55 H Et CH20CH2Ph 0] 8.23
56 3,5-Me2 Et CH20OCH2Ph 0] 8.55
57 H Et CH20OCH2Ph S 8.09
58 3,5-Me2 Et CH20OCH2Ph S 8.14
59 H i-Pr CH20CH2Me O 7.99
60 H i-Pr CH20OCH2Ph 0] 8.51
61 H i-Pr CH20CH2Me S 7.89
62 H i-Pr CH20OCH2Ph S 8.14
63 H Me CH20Me O 5.68
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64 H Me CH20Bu 0O 5.33
65 H Me Et O 5.66
66 H Me Bu O 5.92
67 3,5-Cl2 Et CH20CH2Me S 7.89
68 H Et CH20-i-Pr S 6.66
69 H Et CH20-c-Hex S 5.79
70 H Et CH20OCH2-c-Hex S 6.45
71 H Et CH20CH2C6H4(4-Me) S 7.11
72 H Et CH20CH2C6H4(4-Cl) S 7.92
73 H Et CH20OCH2CH2Ph S 7.04
74 3,5-ClI2 Et CH20CH2Me O 8.13
75 H Et CH20-i-Pr O 6.47
76 H Et CH20-c-Hex O 5.40
77 H Et CH20OCH2-c-Hex O 6.35
78 H Et CH20OCH2CH2Ph O 7.02
79 H c-Pr CH20OCH2Me S 7.02
80 H c-Pr CH20OCH2Me O 7.00
81 H Me CH20CH2CH20OC5H11-n O <4.46
82 2-Cl Me CH20CH2CH20H O <3.89
83 3-CH20H Me CH20CH2CH20H O <3.53
84 4-F Me CH20CH2CH20H O <3.60
85 4-Cl Me CH20CH2CH20H O <3.60
86 4-NO2 Me CH20CH2CH20H O <3.72
87 4-CN Me CH20CH2CH20H O <3.60
88 4-OH Me CH20CH2CH20H O <3.56
89 4-OMe Me CH20CH2CH20H O <3.60
90 4-COMe Me CH20CH2CH20H O <3.96
91 3-COOH Me CH20CH2CH20H O <3.45
92 3-CONH2 Me CH20CH2CH20H O <3.51
Continued on next page
Table 2 — Continued from previous page
Ne° R1 R2 R3 X And-HIV
Compounds ACTIVITY
93 H COOMe CH20CH2CH20H O <5.18
94 H CONHPh CH20CH2CH20H O <4.74
95 H SPh CH20CH2CH20H O <4.68
96 H CCH CH20CH2CH20H O <4.74
97 H CC-Ph CH20CH2CH20H O <5.47
98 3-NH2 Me CH20CH2CH20H O <3.60
99 H COCHMe2 CH20CH2CH20H O <4.92
100 H COPh CH20CH2CH20H O <4.89
101 H CCMe CH20CH2CH20H O <4.72
102 H F CH20CH2CH20H O <4.00
103 H Cl CH20CH2CH20H O <4.52
104 H Br CH20CH2CH20H O <4.70
105 H Me CH20OCH2CH20OCH?2Ph O <4.70
106 H Me H 0] <3.60
107 H Me Me 0] <3.82
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3.1.2. Descriptors

Quantum molecular descriptors have the advantage that they can be calculated for hypothetical
molecule. The bioactivity of drugs depends mainly on its interactions with active site. Good
representation of these interactions needs rigorous descriptions of the drug charges distribution.
Approximative charge distribution representation can be expressed by global and local properties
of electronic density. Such electronic density indices have been successfully used to develop QSAR
models [42, 56]. In the same way as Rahmouni et al. [42], four global descriptors which are
Ionization Potential, Electron Affinity, Softness, Global Electrophilicity index and the local
descriptors which is Dual Fukui function Afk. This function has been calculated at five sites
which are: C7, C8, S, O, N12 atom (figure 1). As can be seen from Table 2 and figure 1, these are
the thymine structure sites where the substituent variation experimentally has been done. All
quantum descriptors have been calculated at density functional theory level using the functional
B3LYP and 6-311g + (d,p) atomic orbital basis set [58—62]. The used neutral molecular
geometries have been optimized at the same level of theory. These geometries have been used in
calculations of charged species. All quantum calculations have been carried out using Gaussian 09
package [63]. Fukui function Afk have been evaluated using Natural Population Analysis (NPA)
[64]. The results for 83 compound have been previously published [42, 57]. It should be noted
that variations in all calculated descriptors can be correlated with the anti-HIV bioactivity of the
HEPT derivatives.

3.1.3. Descriptors Selection

A feature or descriptor is an independent measurable variable of the process being observed.
The set of features used to train machine learning models have a huge influence on the model’s
performance. Thus, it is indispensable to carefully select only those features that contribute
meaningful information when used as input to a linear model.
Feature selection aims to choose a small subset of the relevant features from the original features
by removing irrelevant, redundant, or noisy features. Feature selection usually can lead to better
learning performance, higher learning accuracy, lower computational cost, and better model
interpretability.
Instead of choosing all calculated descriptors which is our source data, we concentrate on
identifying the appropriate attributes to anti-HIV activity. To choose the most optimum
descriptors we use univariate selection which measures by KBest from sklearn [55] using score
function chisquared. The calculation will help us find out the most important attributes, below
are the top 5 suitable descriptors for prediction:
Ionization Potential (I)
C7 site dual descriptor
C8 site dual descriptor
S site dual descriptor

N12 site dual descriptor
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3.1.4. GBR QSAR Model development

After the descriptors calculations and the selection of the relevant ones steps are performed, we
work towards training and validating the model’s performance.

Our dataset has been divided into two subsets; a training set for generating QSAR model and a
test set to evaluate how well our trained model performs on unseen data. Using the train_test_split
function from scikit-learn’s model _selection module [55], we randomly split the total set of
compounds into 20 percent test data (22 compounds) and 80 percent training data (85
compounds). Note that the train_test_split function already shuffles the datasets before splitting.
We use a fixed random_state to ensure that our results are reproducible.

Implementation was done in python [65, 66] using the version 0.22.1 of the scikit-learn machine
Learning Library [55, 67] and all models were trained on MacBook Pro laptop with 2.5 GHz
Intel Core i7 CPU, 16 GB RAM.

4. Results and Discussion

In this section, we report details and the evaluation of the performance of our proposed GBR
model for HEPT derivatives and the anti-HIV activity prediction for both train and test sets. We
also perform experiments on the overall data, the results are discussed below.
We tuned the hyper-parameters then trained the models. The results are reported with the best
model, which is selected by the performance on the train set. The final chosen parameters are

reported in Table 3.

Table 3. Best parameters obtained with gradient boosting.

Hyper-parameter value
No. Estimator 600
Learning Rate 0.02

Max Depth 25
Max Features Log2
Min Sample Leaf 1
Min Sample Split 25

Table 4 reports the results of evaluation of our GBR model on the datasets. We compare
our model with baseline existing models including ANN models proposed by Douali et al., [40]
and Shaik et al., [41] , the MLR models by Shaik et al., [39, 41, 42, 54], the PLS model proposed
by [39] and the SVM model by Shaik et al., [41].

Table 4. Performance of our proposed model.

N° N° Sets R2 MAE MSE RMSE
Compounds | Descriptors
85 Train 0.9923 0.1052 0.0174 0.1322
GBR 22 5 Test 0.5858 0.7714 0.8666 0.9309
107 Over All 0.9147 0.2422 0.1920 0.4382
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As shown in Table 4, our results demonstrate that the coefficient of determination (R?) of our
model is more informative and truthful than state of the art proposed models. Our model also get
results better (or close to) than neural networks models based on ANN architectures which show
that boosting the predictions is very important for the task.

The performance of the GBR model is also assessed by using statistical error metrics like Mean
Absolute Error (MAE), Mean Squared Error (MSE) and Root MSE (RMSE). The statistical
summary of errors is also reported in Table 4 for training, test and overall data.

The statistical evaluation reflects that the developed model manifested close agreement between

experimental and predicted results. In comparison, the GBR model surpassed the accuracy of the

state of the art models, yielding the highest R? and the lowest MAE and RMSE.
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Figure 2. Plot of the experimental and model predicted values of the anti-HIV activity of
HEPT derivatives in overall datasets.

Figure 2 illustrates the real activity values and the estimated ones for the GBR model on the
107 compounds. As we can see from Figure 2, a good agreement between the predicted and the
measured values of the activity is observed. The experimental and the calculated anti-HIV are

reported in Table 5.

Table 5. Experimental and calculated values of the anti-HIV activity

N° Compounds And-HIV Activity Calculated Andi-HIV Activity Residual
1 4.15 4.224395 0.074395
2 3.85 3.758439 -0.091561
3 4.72 4.760461 0.040461
4 5.59 5.595656 0.005656
5 5.57 5.385797 -0.184203
6 4.92 5.039858 0.119858
7 4.35 6.316261 1.966261
8 5.48 5287556 20.192444
9 4.89 5.210121 0.320121
10 5.24 5.267761 0.027761
11 5.00 4.959957 -0.040043
12 447 4.325951 -0.144049
13 4.09 4.376748 0.286748
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14 4.66 4.763285 0.103285
15 6.59 5.912189 -0.677811
16 5.89 5.928105 0.038105
17 6.66 6.625048 -0.034952
18 5.10 4.897999 -0.202001
19 5.14 5.2481 0.1081

20 5.00 4.90885 -0.09115
21 5.60 5.593229 -0.006771
22 6.96 6.833767 -0.126233
23 5.00 5.363776 0.363776
24 7.23 7.355596 0.125596

Continued on next page
Table 5 — Continued from previous page
N° Compounds And-HIV Activity Calculated Anti-HIV Activity Residual

25 8.11 8.056116 -0.053884
26 8.30 8.169909 -0.130091
27 7.37 7.299992 -0.070008
28 6.92 6.762607 -0.157393
29 5.47 5.718068 0.2480068
30 7.20 7.104644 -0.095356
31 7.89 7.900826 0.010826
32 8.57 8.508361 -0.061639
33 7.85 7.663453 -0.186547
34 3.66 5.105185 1.445185
35 5.15 5.294746 0.144746
36 6.01 6.010196 0.000196
37 5.44 5.338469 -0.101531
38 5.69 5.722825 0.032825
39 5.22 5.143688 -0.076312
40 4.37 5.527927 1.157927
41 6.07 5.608641 -0.461359
42 5.06 5.246104 0.186104
43 5.17 5.055092 -0.114908
44 5.12 5.320029 0.200029
45 6.48 6.485013 0.005013
46 5.82 5.830899 0.010899
47 5.24 5.060602 -0.179398
48 5.96 5.978538 0.018538
49 5.48 4.886623 -0.593377
50 7.06 7.073937 0.013937
51 7.72 7.613487 -0.106513
52 7.58 7.505393 -0.074607
53 8.24 7.196055 -1.043945
54 8.30 8.325924 0.025924
55 8.23 7.999344 -0.230656
56 8.55 8.378993 -0.171007
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57 8.09 6.745106 -1.344894
58 8.14 7.46304 -0.67696
59 7.99 7.84448 -0.14552
60 8.51 8.44929 -0.06071
61 7.89 7.650892 -0.239108
62 8.14 7.913083 -0.226917
63 5.68 5.509005 -0.170995
64 5.33 4.82577 -0.50423
65 5.66 5.53596 -0.12404
66 5.92 5.84298 0.07702
67 7.89 7.883271 -0.006729
68 6.66 6.614121 -0.045879
69 5.79 6.026258 0.236258
70 6.45 7.630187 1.180187
Continued on next page
Table 5 — Continued from previous page

N° Compounds And-HIV Activity Calculated Andi-HIV Activity Residual
71 7.11 6.883806 -0.226194
72 7.92 7.790105 -0.129895
73 7.04 7.479501 0.439501
74 8.13 7.997541 -0.132459
75 6.47 6.473724 0.003724
76 5.40 5.507018 0.107018
77 6.35 6.324032 -0.025968
78 7.02 6.952559 -0.067441
79 7.02 7.411836 0.391836
80 7.00 7.041514 0.041514
81 <4.46 4.287657 -0.172343
82 <3.89 3.981287 0.091287
83 <3.53 5.122133 1.592133
84 <3.60 3.656126 0.056126
85 <3.60 3.910322 0.310322
86 <3.72 3.763059 0.043059
87 <3.60 3.779849 0.179849
88 <3.56 3.63339 0.07339
89 <3.60 3.819368 0.219368
90 <3.96 3.989068 0.029068
91 <3.45 3.603296 0.153296
92 <3.51 3.686436 0.176436
93 <5.18 5.175317 -0.004683
94 <4.74 4.76652 0.02652
95 <4.68 4.841471 0.161471
96 <4.74 4.479576 -0.260424
97 <5.47 4.985387 -0.484613
98 <3.60 3.601492 0.001492
99 <4.92 4.890554 -0.029446
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100 <4.89 5.48845 0.59845

101 <4.72 4.795568 0.075568
102 <4.00 3.966014 -0.033986
103 <4.52 4.560081 0.040081
104 <4.70 4.740508 0.040508
105 <4.70 4.837693 0.137693
106 <3.60 3.717912 0.117912
107 <3.82 5.242484 1.422484

5. Conclusion

In this paper, we have described an approach for anti-HIV activity prediction. The proposed
approach uses five quantum descriptors. We performed experiments on 107 HEPT derivatives
with the coefficient of determination as an evaluation metric. Experiment results show that our
approach achieves state-of-the-art performances.

Further work in this area could be done in several directions. There are some possible
extensions that must been taken into consideration as immediate goals, and we think that they
should be studied such as the exploration of deep learning algorithms. Moreover, the enlargement
of the dataset would be very advantageous to build more accurate models. As one long-term goal,
it would be beneficial and useful to conduct a deep study concerning the most important and

potent descriptors to the task.
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